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1 Introduction to the “Introduction to MATLAB”

This is a short and subjective introduction to MATLAB which stems from my own expe-

rience with MATLAB programming gathered in the course of time. Consequently, these

notes are far from being exhaustive, but they should be sufficient to get a quick start. For

a more comprehensive and thorough reference, you are advised to consult MATLAB’s help

menu, or MathWorks’s official online documentation at http://www.mathworks.

com/access/helpdesk/help/helpdesk.html, or books such as Hanselman and

Littlefield (2004).

Before jumping in, a last word for the absolute beginners based on my personal experi-

ence. Starting to write your own programs or to get acquainted with a new programming

language is a tiresome and frustrating business. As in the learning process of any foreign

language, your code will be circuitous and inefficient at the start due to the lack of your

“vocabulary.” At the start, you will not get what you want most of the time, because

1



your code is erroneous. However, making errors is the key to learning a language, since

it teaches you things books or notes could not teach you (which is more than one would

expect). Moreover, it will provide you a deeper understanding of commands and ways to

solve a problem. Essentially, programming is a trial-and-error process that necessitates

much “hands-on” work. But, as time elapses, you will notice a boost of programming

efficiency and find out that there is no magic in learning to program, but that it is rather

simply a question of how much time you can force yourself to spend working on it.

2 Preliminary Information

When it comes to decide which programming language to use, you should clearly base your

decision on the approach you want to apply to a specific problem. In economic analysis, we

can make a coarse distinction between numerical and symbolic computations. MATLAB

is intended for numerical problems, although there is an add-on symbolic toolbox that

has to be purchased. However, if you want closed-form solutions to algebraic problems,

it is better to use Maple or Mathematica. The former has a syntax which is similar to

MATLAB’s symbolic toolbox. In contrast, if your problem is a numerical one, you should

use GAUSS, MATLAB, or R, for example.

Economist are most likely to encounter problems that call for standard methods such

as matrix algebra, matrix decompositions, simulation of random numbers, numerical

optimization, and solving eigenvalue problems and systems of (non)linear equations. All

of these are easy to accomplish in MATLAB. Furthermore, when taking a look at the

available MATLAB toolboxes, it becomes clear that you can tackle nearly any conceivable

numerical problem with MATLAB, no matter whether you were a biologist or a rocket

scientist.

One of the major advantages of MATLAB is its incredible flexibility in setting up your

own functions that do some specific computations you want. This is a crucial issue,

especially for people doing research, since there are many instances where, despite of the

vast arsenal of so-called built-in functions, which MATLAB and its toolboxes offer, you

need a special function custom-tailored to your specific problem at hand. Nowadays,

many researcher make their MATLAB functions available online. This provides non-

commercial MATLAB functions with an open-source flavor and allows the application

of state-of-the-art techniques long before they are implemented in more conventional

software packages such as EViews or MS Excel, for example.

There are many textbooks out which deal with the solution of economic or, more gener-

ally, mathematical problems by using MATLAB. The following list is only a rudimentary
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guide to this literature, as it is based (again) on my preferences and working experience.

Coombes et al. (2000) is a very good and basic introduction to the numerical solution

of ordinary differential equations using MATLAB. Venkataraman (2002) is a very well-

written introduction to the field of numerical optimization. It covers all kinds of problems

and develops its own solutions (no black-box). However, these solutions might be too

peculiar for problems that you want to solve. Morgan (2000) and Martinez and Mar-

tinez (2002) cover MATLAB solutions to statistical problems. While the former presents

more cutting-edge techniques, the latter is simpler and more comprehensive. Note that

both are superb on methods but do not use economic problems as illustrations. In dy-

namic macroeconomics, Ljungqvist and Sargent (2000) and Favero (2001) are worthwhile

mentioning. Both use MATLAB for numerical simulations. Miranda and Fackler (2002)

is a very interesting book which connects pure methods and their applications to eco-

nomic and financial problems. Brandimarte (2002) follows the same presentation style

but concentrates on finance only. Lastly, if you are interested in MATLAB’s graphical

capabilities and its Graphical User Interface (GUI), you could look up Marchand and

Holland (2003), beside MATLAB’s own documentation.

Furthermore, there are some non-commercial toolboxes that you can download from

the internet. For example, Harald Uhlig’s Toolkit at http://www.wiwi.hu-berlin.

de/wpol/html/toolkit.htm or Bennett McCallum’s MATLAB files at http://

business.tepper.cmu.edu/display\_faculty.aspx?id=96 constitute, by now,

standard software packages which solve (numerically) linear (rational expectations) macro-

economic models. A newer and much more flexible tool is Dynare at http://www.

cepremap.cnrs.fr/dynare/. Dynare solves RE models based on first- and second-

order approximations. Moreover, it is suppose to do structural estimation. If you are

more interested in econometrics, you should check out James LeSage’s Econometrics

Toolbox at http://www.spatial-econometrics.com/. This is an amazing and

still expanding collection of almost every econometric technique you might have heard

of. Dynare and the Econometrics Toolbox are very good example for the blessings of

open-source software. Its transparency allows users all around the globe to perpetually

check, improve, and extend procedures.

Nevertheless, you need to learn how to write and run a program before using a toolbox.

A program can be considered as a “stand-alone” function. Thus, a program is structurally

more basic than a function. Writing a program, in turn, requires a basic understanding

of how MATLAB works and what it can do.
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3 Getting Started

Start MATLAB from the Microsoft start menu or by double-clicking the MATLAB icon

on your desktop, if available. The MATLAB window opens which should be partitioned

into three sub-windows (default setting). Section 3.1 explains what these windows do

but, for the moment, we will solely focus on the large window on the right-hand side

displaying a cursor and the so-called MATLAB command prompt (»).

As usual, commands are entered via the cursor. The prompt indicates that MATLAB

is ready to receive your commands. When the cursor (and the prompt) is not displayed,

MATLAB is busy doing computations so that no commands can be entered. A problem,

that sometimes arises in looping algorithms, is that MATLAB hooks up in endless com-

putations. In this case, you should stop computations by pressing the Ctrl – and the

C –key simultaneously.

3.1 MATLAB Windows

In this section, we shortly characterize the three sub-windows displayed in MATLAB’s

default setting.

The window of primary interest is the large window on the right-hand side. It is termed

the Command Window, since it is the vehicle by which MATLAB communicates with the

user by exchanging commands for output and vice versa. Although the two smaller

sub-windows on the left-hand side turn out to be useful as well, I prefer to shut them

down in order to get more space in the Command Window for displaying output. (Notice

that older versions of MATLAB did not include these two sub-windows.) Actually, closing

these sub-windows is an absolutely innocuous operation, as it is pretty easy to retrieve and

display their information content in the Command Window by invoking the appropriate

commands (see Chapter 5). If you choose to close the smaller sub-windows, you can bring

them back by clicking the sequence of buttons View −→ Desktop Layout −→ Default

on the MATLAB menu bar.

The upper sub-window on the left-hand side consists of two stacked windows: Workspace

and Current Directory. The window labeled Workspace contains information about vari-

ables currently residing in the MATLAB workspace/memory. Variables residing in the

workspace must have been a priori defined by the user. Notice that all variables, you have

created, are lost by exiting MATLAB unless they have been saved to disk. The window

labeled Current Directory shows the content of the current working directory/folder. You

may easily change the current working directory by navigating as within the Microsoft
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Explorer.

The lower sub-window on the left-hand side, Command History, contains a chronolog-

ically inverted list with commands used in past sessions. These past commands can be

re-activated by double-clicking on them. However, notice that if they refer to variables

not contained the current workspace, you will get an error message, since MATLAB does

not know the variables involved in those commands.

3.2 MATLAB Variables

In this section, we take a glimpse at types of variables available in MATLAB. Hence, it

serves the sole purpose of characterizing these types from a global perspective for someone

with no programming experience at all. A detailed discussion of how to define and work

with these types of variables is provided in Chapter 4. MATLAB distinguishes between

four different types of variables which has important implications for the way they are

internally processed: numeric, (character) string, cell, and structure variables.

Numeric variables can take on real or complex values. Furthermore, they can be rep-

resented as scalars, vectors, or matrices.

String variables are strings of characters. They are usually used for labeling output or

plots and for supplying function names as input arguments to other functions.

Cell variables are considered to be a major remedy to the problem that it is not possible

to put different types of variables into a single variable (while preserving their very nature)

or that there may be difficulties when putting different character strings into a single

entity. Thus, cells can be thought of as data containers admitting different types of

variables.

Structure variables resemble cell variables. However, they are easier to deal with and

seem to be strongly preferred by most MATLAB users. Structure variables are predomi-

nantly used as input and output arguments of functions, since they are able to transport

all sorts of data.

4 Types of Variables

This chapter takes a closer look at the aforementioned variable types of Section 3.2, i.e.,

how they are entered into the workspace and how they are displayed in the Command

Window.
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4.1 Numeric Variables

MATLAB (MATrix LABoratory) is a matrix-based programming language. This fol-

lows from the fact that matrices are the fundamental objects in MATLAB. A matrix is

rectangular double-data array. Keeping this in mind, we will now learn how to define

matrices.

For example, suppose that you want to read in the scalar variable

A = 2

in the MATLAB workspace. This can be interpreted as a (1×1)–matrix. This can easily

be accomplish by typing

>> A = 2

and pressing the Return –key. Notice that an equality sign is interpreted by MATLAB

as an assignment operator, that is, the expressions or commands on the right-hand side

of the equality are assigned to the variable on the left-hand side.1 For this to work out,

every variable on the right-hand side of an equality sign must be defined. If this is done,

a variable can be assigned to another or new variable. For example,

>> b = A

assigns the value of variable A to the newly created variable b. Next, observe what the

following line does:

>> A(2,2) = 3

Obviously, the result looks like a (2 × 2)–matrix. From this, we may be tempted to

infer that the last command turned the scalar A into a matrix, but this is not really

correct. In general, the command A(i,j) = x assigns the value x to the element which

is positioned in the i th row of the j th column of matrix A. If this element lies outside

of the current dimensions of A, MATLAB automatically creates the respective rows and

columns. Elements of these rows and columns, which have not been assigned to any

specific values, are then filled up with zeros. This explains why, in the above example,

the off–diagonal elements equal to zero. Thus, the reason, we did not get an error message

when switching from a scalar to a matrix, is that MATLAB implicitly defines numeric

variables as matrices. Extending A by assigning the value 1 to the element in the 3rd row

of the 2nd column, transforms A to a (3 × 2)–matrix.

1In mathematics, this corresponds to expressions like A := 2 or A ≡ 2.
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>> A(3,2) = 1

The same syntax can be used to retrieve information from a numeric array. For example,

if you want MATLAB to display the third element of the second column of A, type

>> A(3,2)

Note that we left out the assignment operator (=) and thereby got MATLAB to return

the corresponding element of A. More advanced techniques for handling matrices are

presented in Chapter 6. Next, suppose you want to define the (3 × 3)–matrix

A =







2 0 1

1 3 3

−2 1 0






.

Although you could proceed as before by assigning each matrix entry to the desired value,

it quickly becomes quite cumbersome to address each and every single element. A more

direct approach is to use one of the following syntaxes:

>> A = [2 0 1; 1 3 3; -2 1 0]

or

>> A = [2, 0, 1; 1, 3, 3; -2, 1, 0]

Note, as a general rule, that different rows of a matrix are separated by a semi-colon (; ),

whereas two elements within the same row can (but must not) be separated by a comma

(, ). Likewise, the (3 × 1)–column vector,

a =







3

2

5






,

is generated by typing

>> a = [3; 2; 5]

4.2 String Variables

String variables represent series of characters enclosed in apostrophes. For example,
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>> s = ’This is a string!’

assigns the sentence “This is a string!” to the variable s , thereby implicitly defining it as

a string variable. Like numeric variables, strings can be packed into a matrix. Try

>> s = [ ’abc’ ’cba’ ]

and

>> s = [ ’abc’ ; ’cba’ ]

For retrieving the second letter in the third column, type

>> s(2,3)

Note, however, that strings, which are packed into arrays, must have conformable dimen-

sions. For example,

>> s = [ ’abc’ ; ’cb’ ]

does not work, since the string in the first row consists of three letters (abc ), whereas

the second string consists of two letters (cb ) only.

4.3 Cell Variables

A way of incorporating strings of different dimensions into a single variable is to use cell

variables. For example,

>> c = { ’abc’ ; ’cb’ }

accomplishes this task. Notice that curled brackets are exclusively reserved for operations

involving cell variables. Using the syntax

>> c{2}

lets us retrieve the element in the second row, because c is essentially a cell vector.

Furthermore, it is possible to put numeric and string variables into a cell variable like in

>> c = { ’abc’ ; ’cb’ ; 69}

This feature explains why cells are often referred to as data containers. However, we

encounter a similar snag, as we did in the previous section, if we try

>> c = { ’abc’ ; ’cb’ 69}
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4.4 Structure Variables

Finally, consider the example of setting up a structure variable which should incorporate

information on artificial data from the US stock market. Let us name this structure

variable usa . Individual components of the structure variable usa are addressed by

simple name extensions, i.e., structure fields. For example,

>> usa.date = ’Oct. 2004’

assigns a string variable to the structure field date of the structure variable usa . Like-

wise,

>> usa.sp500 = 7000

and

>> usa.nasdaq = 5000

include scalars to the fields sp500 and nasdaq . Lastly,

>> usa.correlation_matrix = [1 0.6; 0.6 1]

assigns a matrix to the field correlation_matrix . Once you have created the struc-

ture variable by defining the first field, it will be automatically updated with every con-

secutively entered field. Typing

>> usa

provides you the information on the components of the structure variable usa . In order

to retrieve the information of a particular field of the structure variable like, for example,

the date or the correlation matrix, simply type

>> usa.date

or

>> usa.correlation_matrix

respectively. Note that structure variables allow us to store variables of different types

(numeric, string, cell, structure) and dimensions (scalar, matrix) in any arbitrary order.
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5 Useful Gimmicks

In this chapter, we will see how to retrieve specific information from within the Command

Window. Additionally, some very useful commands are presented which make program-

ming life much easier.

5.1 Changing the Current Working Directory

One problem that often occurs when using data in different directories can be described

as follows. If your data do not reside within the current working directory, it cannot be

loaded and manipulated. There are two solutions to this problem: (a) telling MATLAB

the path of the directory where the data reside or (b) “jumping” to the respective directory

by changing the current working directory.

In order to apply the second solution, we need to know what the current working

directory is and how to change it. To get the path of the present working directory, type

>> pwd

Alternatively, type

>> cd

in order to retrieve the current directory.

For moving the current working directory one directory upwards, type

>> cd ..

If you want MATLAB to display all directories and files contained in the current directory,

type dir (directory) or ls (list).2 Initially, the current working directory was the work

directory (default setting). We can now “jump” back to the work directory by changing

the current working directory to the work directory:

>> cd work

Check whether you were successful!

2Files have a corresponding extension, directories don’t.
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5.2 Retrieving Information from the Workspace

After having defined b, a, and A, we expect MATLAB to know these variables. This can

be checked by typing

>> whos

which gives the names, dimensions, storage requirements, and types of variables in the

MATLAB workspace memory. Note that this corresponds exactly to the information we

lose when closing the window which contains the workspace variables.

5.3 Clearing the Workspace

If you want to delete, say, matrix A from the workspace memory, you can accomplish

this by using the clear -command

>> clear A

or if you want to delete all variables being currently in the workspace, use

>> clear all

5.4 Getting Help from the Command Window

If you want to know more about what a certain command does and how it is used, you

can invoke the help –command. Type

>> help whos

or

>> help clear

in order to learn more about these two commands.

When getting started with MATLAB, one usually does not know any commands for,

e.g., inverting a square matrix. In these cases, you can use the lookfor –command which

searches MATLAB files for a certain buzzword. For example, to find the command that

computes the inverse of a square matrix, type
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>> lookfor inverse

What should come up, among other things, is the line

INV Matrix inverse.

so we know that the inv –command is what we are looking for. Use

>> help inv

to check it and to see how it is implemented.

5.5 Scrolling Back the Command History

Since we have deleted all variables from the workspace, we would have to define matrix

A again in the usual way. However, this can be elegantly circumvented by pressing the

↑ –key on your keyboard. By doing so, we scroll back the command history, i.e., the list

of all past commands. You should stop when

>> A = [2 0 1; 1 3 3; -2 1 0]

re-appears and press the Return –key. Do the same for vector a! Check with whos to

see whether you were successful! Note that this corresponds exactly to the information

we lose when closing the Command History window .

5.6 Clearing the Command Window

There may be occasions, where the Command Window is overcrowded with redundant

code and output. In such instances, you can clear the command window by typing

>> clc

5.7 Determining the Dimension of Arrays

When writing a program, one is often confronted with the problem of setting up a matrix

whose dimension should conform to the dimension of an already existing matrix with

possibly changing or unknown dimension. For these case, the size -command turns out

to be extremely useful. For example, type
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>> size(A)

in order to determine the dimension of matrix A. Using help size shows that size

returns a (1× 2)-row vector whose first element is the number of rows and whose second

element is the number of columns.

6 Matrix Manipulation

In the last chapter, we first introduce commands for the efficient generation of special,

but often needed matrices. Next, we show how to transform matrices and to conduct

algebraic matrix computations.

6.1 Special Arrays

There are special commands for generating frequently used matrices, which have easy

structures, so that you do not need to define them explicitly. For example, the eye -

command creates an identity matrix. The zeros – or ones –command create arrays

consisting, solely, of 0’s or 1’s, respectively. Use the help –command to learn how these

commands are invoked.

MATLAB knows empty arrays, i.e., matrices with dimension (0×0). They are invoked

by applying the [] –operator. For example, in order to turn vector a into an empty array,

type

>> a = []

Check the dimensions of a by whos and size !

• Exercise 1 •

(a) Create a (3 × 1)-null vector!

(b) Create a (3 × 1)-unity vector!

(c) Create a (3 × 3)-matrix consisting solely of zeros!

(d) Create a (3 × 3)-matrix consisting solely of ones!

(e) Create a four-dimensional identity matrix!
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6.2 Partitioning and Merging Matrices

As already seen in Section 4.1, the syntax for assigning values to a matrix can also be

used to extract values of a matrix. For example, assume that we want to extract the

element positioned in the first row of the first column of A. Then, type

>> A(1,1)

Similarly, for returning the element of the second row of the third column of A, type

>> A(2,3)

If this value is going to be used in future computations, it should be assigned to a specific

variable. To this end, you can simply assign A(2,3) to a new variable, say, b as in

Section 4.1:

>> b = A(2,3)

In order to extract a whole row or column, use the colon notation (: ). For example, to

extract the first row A, type

>> A(1,:)

This expression instructs MATLAB to take the first row of A and extract all of this row’s

elements. To extract the second column of A, type

>> A(:,2)

This expression instructs MATLAB to take the second column of A and extract all of

this column’s elements. To extract the first two elements of the third column of A, type

>> A(1:2,3)

This should be understood as taking rows 1 to 2 and extracting the third elements of these

rows. Put differently, this command extracts the elements lying in the intersection of the

indexed rows and columns. There is another important application of the (: )–operator.
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Suppose you want to compute the vectorization of A,

vec[A] =





































2

1

−2

0

3

1

1

3

0





































,

that is, stacking all columns of matrix A.3 In order to vectorize A, type

>> A(:)

Sometimes one has to address the last row or column of a matrix, but does not know its

dimension. In this instance, the last row of a matrix can be extracted by

>> A(end,:)

Sometimes the result of a command is a high-dimensional matrix, e.g., (100× 100). In

such cases, we can suppress the result from being printed in the Command Window by

putting a semi-colon at the end of the command.

There are situations where one wants to merge existing matrices in order to set up a

new matrix. This is done by defining a new matrix array and placing the existing matrices

in the desired order (concatenation or merging). For example, look at the results of

>> [A ones(size(A))]

and

>> [A; ones(size(A))]

The ones -command can be very convenient for copying rows or columns of a matrix.

For example,

>> A(:,ones(1,2))

3Cf. Magnus and Neudecker (1999), p.30.
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duplicates the first column of A. Similarly,

>> A(:,ones(1,4))

or

>> A(:,ones(2))

puts 4 (horizontally concatenated) copies of the first column of A into a new matrix.

• Exercise 2 •

(a) Extract the upper left-hand sub-matrix

[

2 0
1 3

]

from matrix A!

(b) Generate matrix




0 0 1
0 0 3

−2 1 0





out of matrix A using only one command!

(c) Delete the third row of matrix A! (Hint: Use an empty array by invoking the
[] –operator.)

(d) Extract the first and the third columns of matrix A simultaneously! (Hint: Try
to find an appropriate indexing vector for addressing the respective columns.)

(e) Bring the original matrix A back into the MATLAB workspace and duplicate
the second row of matrix A so that it constitutes a (2 × 3)-matrix!

(f) Duplicate
[

2 0
1 3

]

from matrix A so that it constitutes a (2 × 4)–matrix, that is, concatenate it
horizontally! Alternatively, consider the reshape – and repmat -commands!
Which one can be used to replicate the desired result? Why?

(g) Generate matrix

A =





100 0 100
1 3 3

100 1 100





out of matrix A using only one command! (Hint: Indexation works like an
intersection operation.)
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6.3 Matrix Algebra

Concerning matrix algebra, we will mainly deal with matrix addition (+), subtraction

(- ), and multiplication (* ). Remember that you must be cautious about the matrices’

dimensions.

Other useful operations are the so-called element-by-element multiplication4 (. * ) and

division (./ ). Assuming that the dimensions of the matrices are the same, each element

of the first matrix is multiplied or divided by the corresponding element of the second

one, respectively. Furthermore, standard scalar exponentiation (ˆ ) can be extended to

exponentiating each element of an array (.ˆ ).

• Exercise 3 •
Define

X =





2 0 1
1 3 3

−2 1 0



 , Z =





3 2
−1 3

0 −1



 , y =





3
2
5



 .

and compute (but think about what you are doing):

(a) 2X,

(b) XZ,

(c) Z ′Z (Hint: type a prime (’ ) sign after a matrix to generate its transpose),

(d) ZZ ′,

(e) XZ ′,

(f) yZ,

(g) (X ′X)
−1

X ′y (Hint: Use the inv –command to compute a matrix’s inverse),
and

(h) concatenate y and Z horizontally to yield a (3 × 3)–matrix and conduct an
element-by-element multiplication with matrix X.

7 Miscellaneous

Of course, before you can start to program, you need to know a minimum amount of

commands which may serve as basic ingredients. To this end, this chapter shortly intro-

duces some commands an econometrician might often need to call upon. However, this

overview is, again, very selective.

4This operation is also known as the Hadamard Product. Cf. Magnus and Neudecker (1999), p.45.
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7.1 Random Number Generator

New simulation techniques in econometrics and financial engineering heavily rely upon the

generation of random numbers. The basic version of MATLAB contains two different ran-

dom number generators. The rand –command generates uniformly distributed random

numbers, whereas the randn –command generates standard normal random numbers.

This might seem to be a quite strong restriction, but notice that you could look up a

book on simulation methods, which usually describes how to generate almost any ran-

dom number out of uniform random numbers, or you may purchase MATLAB’s Statistics

Toolbox, which contains a wide variety of random number generators.

In order to generate a sample of standard normal variables, i.e., realizations of a random

variable with mean µ = 0 and variance σ2 = 1, use the randn –command which creates

an array made up of realizations of a standard normal variable. For example, by typing

>> x = randn(100,100);

you generate a (100 × 100)–matrix of realizations drawn from the standard normal dis-

tribution and assign it to the new variable x . As displaying such a large matrix does not

provide us with much useful insight, we suppress its print-out. Instead, it might be more

useful to take a look at a smaller part of x . This can be accomplished by typing

>> x(1:10,1:2)

for example, if you want MATLAB to display the elements positioned in the upper

left (10 × 2)–array of x . Compare your realizations with those of your classmates. As

expected, you will find out that all samples differ. Moreover, by generating and printing

some more samples with

>> x = randn(100,100); x(1:10,1:2)

we can notice that every repetition produces a different set of realizations.

However, there may be occasions where you want to control for the randomness in

simulations.5 This can easily be done as computers cannot generate realizations of truly

random variables. Computers generate pseudo-random variables in a deterministic way.

Think of a sine curve where the abscissa represents the number of draws. Then, it is

easy to see that functional values re-occur, if the number of draws is sufficiently high.

5Such a situation could be a Monte Carlo simulation where changing sample sizes and parameters
affect simulated statistics. In order to check for the correctness of the program or the impact of changing
sample sizes and parameters, one may want to eliminate the effects of randomness.
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But, of course, the cycles of pseudo-random number generators are much more complex

and chaotic than a simple sine function, and their frequency is extremely low. In order

to obtain the same sample of realizations, we have to fix the starting point (seed) in

the pseudo-random number cycle. For example, let us fix the seed at position 23 with

MATLAB’s state –option6 and generate x again

>> randn( ’state’ ,23); x=randn(100,100); x(1:10,1:2)

Re-run your commands and compare what your classmates obtain!

• Exercise 4 •

(a) Fix the seed at state=23 and generate a sample of the random variable
X ∼ N

(

µ, σ2
)

with µ = −0.5, σ2 = 1.5625, and sample size n = 15!

(b) Fix the seed at state=23 and generate a sample of the random variable
X ∼ Unif(a, b) with supp(X) = [5, 10] and sample size n = 25!

7.2 Saving and Loading Data

Saving data to disk is almost inevitable. Moreover, when doing applied research with

real-world data, it is necessary to load-in external data to the MATLAB workspace for

econometric analysis. Hence, this section shows how to save and load data to disk using

two different file formats: .mat-files and .xls-files.

Files in the .mat–format are more natural to MATLAB, since .mat–files optimize

processing speed. As an illustration, assume that you want to simulate 1000 realiza-

tions of a white noise process drawn from the standard normal distribution and to save

the resulting sample as an .mat–file in the current working directory. First, check the

content of the current working directory by inspecting the corresponding sub-window or

typing

>> ls

Presumably, the current working directory is empty, but at least there should be no file

named “econ.mat”. Now, generate 1000 realizations of the standard normal distribution

and assign it to the variable x :

>> randn( ’state’ ,23); x=randn(1000,1);

6It is still possible to initiate the seed by MATLAB’s seed –option, however, this is not efficient and
should not be used in its current version.
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In order to save x to an .mat-file named “econ”, simply type

>> save econ x

and, finally, clear the workspace:

>> clear all

Now, verify with the whos– and ls –commands that your sample vector x has been

deleted from the workspace, but that it is now saved as “econ.mat” to the current working

directory. Alternatively, you could look up the Workspace and Current Directory sub-

windows. Note that you can provide MATLAB with a list of variable names after the

save –command that you want to be saved, but the first name is automatically defined

to be the name of the file to be created. In order to re-load x from “econ.mat”, type

>> load econ

and verify with the whos-command or the corresponding sub-window that x is back

again in the workspace.

The save – and load –commands also support the ASCII -format. For this and other

features of these two functions, use the help –command. Nevertheless, formats special-

ized for other software packages like Excel -spreadsheets, for example, have their own

input/output functions in MATLAB. In order to save x to an .xls-file named “econ”, type

>> xlswrite( ’econ’ ,x)

and clear the workspace:

>> clear all

Verify with the whos– and ls –commands that your sample vector x was erased from

the workspace, but that it is now saved as “econ.xls” to the current working directory.

Alternatively, you could look up the Workspace and Current Directory sub-windows. In

order to re-load x from “econ.xls”, type

>> x = xlsread( ’econ’ );

and verify with the whos–command or the corresponding sub-window that x is back

again in the workspace. Note that you have to provide the file name as a string variable

(’econ’ ) without file extension to both .xls-functions.
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7.3 Loops and Branching

There are different types of looping and branching structures depending on the software

package you use. The two most important looping structures in MATLAB are the for -

and the while-loop.

A for -loop executes a series of commands for a pre-specified number of iterations. In

order to introduce for -loops consider the problem of summing up all realization of your

simulated data in “econ.mat”.

>> clear all

>> load econ

>> n = length(x);

>> s = 0;

>> for i = 1:1:n

s = s + x(i);

end

>> s

The syntax i = 1:1:n (or i = 1:n ) instructs MATLAB to set up a vector starting

from 1 with increments 1 up to the number n computed by length(x) .7 The length –

command computes the dimension or length of a vector. We intend to store the value of

the sum of x in variable s which has to be initiated before it can be used in the for-loop.

This has to be done because s is used in an iterative manner within the loop, i.e., it

changes after each iteration, and we have to fix its starting value somewhere before. Of

course, the most reasonable choice is to fix s at 0.

In the for –line, i starts at 1 and increases with unit-increments until it reaches n.

On every run, the series of commands between the for – and the end–line are executed.

Hence, the loop runs n-times, and the expression between the for – and end–line are

implemented n-times. On the first run, the first entry of the random sample vector,

x(1) , is added to s = 0 . On the second run, s = s + x(i); adds the first element

of x , which is stored in s , to the second element of the random sample vector, x(2) . On

the third run, s = s + x(i); adds the sum of the first two element of x , stored in s ,

to the third element of the random sample vector, x(3) , etc. Consequently, the sum in

s is updated on each run of the for –loop by adding the current element in the random

sample vector. At the end of the loop, s represents the total sum of all elements of x .

You can verify your result by invoking the MATLAB built-in function sum.

7Note that this is equivalent to i = [1:1:length(x)]; as it produces the same result. However,
i = [1:1:length(x)]; is more consistent because it accentuates that an array is created.
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In contrast to for -loops, while-loops execute a series of statements iteratively for an

unspecified number iteration until a specific termination criterion is met. This structure is

a very important building block in numerical search algorithms which iteratively search for

a solution, but stop when the computed value does not change significantly. Consequently,

while-loops are much more flexible than for -loops but may be computationally more

demanding.

It is worthwhile mentioning that looping structures should be avoided whenever possible

in MATLAB. MATLAB is much faster when algorithms are based on its built-in functions

and/or are vectorized. There is no recipe for the latter. It is rather a matter of experience.

However, to give a short example of what vectorization in the present context means

consider the following code

>> unit = ones(size(x));

>> x’ * unit

which simply computes the sum of x as the inner product of x and a conformable unit

vector. Although this is much more efficient than using a for -loop, you are advised to

apply MATLAB’s sum–function as there is no need to define a conformable unit vector.

Branching structures control the flow of computations at certain points of the program.

In MATLAB, two very useful branching structures are if /else and switch . For

example, assume that you want to trim the data set in x , e.g., eliminate all values in x

that are larger than a pre-specified threshold value, say x̄ = 0.5, such that

xtrim =







x if x 6 x̄

0 else.

This can be accomplished by

>> x_trim = x;

>> for i = 1:1:n

if x(i)>0.5

x_trim(i) = 0;

else

x_trim(i) = x(i);

end

end

>> [x x_trim]
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Notice, however, that the resulting xtrim does not really constitute a trimmed version

of our data set, since we have simply replaced values larger than 0.5 by 0. In order to

eliminate these elements, we can code

>> x_trim = 0;

>> for i = 1:1:n

if x(i)<=0.5

x_trim = [x_trim; x(i)];

end

end

>> x_trim(1) = [];

>> x_trim

The solution to this problem is conceptually more cumbersome as, at the beginning,

we do not known the dimension of the resulting x_trim –array. Thus, we initiate it

as a scalar, x_trim = 0; , and stack in x_trim all values of x smaller than or equal

to 0.5. In this way, the dimension of x_trim increases each time an x(i)<=0.5 is

encountered. This has two disadvantages: Firstly, we have to delete the first element

because it simply corresponds to the initialization of x_trim used in the first call of

if . Secondly, increasing the dimension of arrays is computationally very inefficient and

should be avoided whenever possible by anticipating the final dimension a priori.

• Exercise 5 •

(a) Compute the sum of the elements in x using the while-loop!

(b) Compute the absolute value of the random sample in x and store this new
series in x_abs ! To this end, use the if -branching structure! Compare your
result to that of the MATLAB built-in function abs !

7.4 Plotting

MATLAB has many (easy-to-use) plotting and graphing devises. The most important is

the plot –function. The simplest usage of plot is

>> plot(x)

This usage, however, might blur the understanding of how plot really works. The

plot –command creates an (x, y)-graph in the Euclidean plane. To this end, it requires

two inputs: a vector for the x-axis and a vector for the y-axis with the conformable
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length. The latter is represented by the vector of realizations in x . The former must be

created. It must be a vector with increasing increment and the same length as x . For

example, define a (time) vector t as

>> t = 1:1:length(x);

Check the sizes of your variables! Now you can plot your random sample in a graph by

>> plot(t,x)

Indeed, this looks like a time series plot of a white noise process. Note that we have used

a column and a row vector in the plot –command. This does not cause any problems as

long as the lengths of the vectors are the same, since the assignment for setting up the

the ordered pairs (x, y) is obvious. Now furnish your plot by adding a title

>> title( ’Gaussian White Noise Process with \mu=0 and \sigmaˆ2=1’ )

an x-label

>> xlabel( ’t ’)

a y-label

>> ylabel( ’x(t)’ )

a legend

>> legend( ’series x’ )

and a grid

>> grid

Notice that MATLAB does not open a new figure window when calling plot again but

automatically erases the old graph from the screen. If you want to keep a current graph

and plot a new one into another figure window, you have to open up a second window by

typing

>> figure(2)

Consecutive figure windows must be called accordingly by changing the input argument

of figure . You should use close all at the beginning of your programs in order to

close all open figure windows left over from prior computations.

Another useful plotting function is the subplot –command which will be illustrated

in the next chapter.
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8 Programs

8.1 Saving and Running Programs

Before setting up a program, you are advised to think about the organization of your

program files. Open the Windows Explorer and create a new folder named “econ” where

to save your programs.

Your starting point for setting up a program is to create a program file which is called

m-file in MATLAB. Open the File –menu and choose New . Then click on M-file in

order to open up the so-called MATLAB m-file editor. Alternatively, you can simply click

on the icon that looks like a sheet of paper. Any commands that should be executed by

the program should be written into the editor.

This new m-file has to be saved by selecting Save As... from the File –menu in the

m-file editor. Save it as “tutorial.m”. To run this program, switch back to the command

window, type its name (tutorial) and press the Return –key. Each time you modify your

program, it should be saved before it is run. Otherwise the old version of your program

will be executed. Alternatively, pressing the F5 –key in the m-file editor automatically

saves and runs the program.

8.2 An Example

As your first program, load-in the data from your “econ.mat” file and transform the white

noise series according to the formula

yt = µ + σxt

in order to simulate four normally distributed series with different means and variances.

Finally, use the subplot –command to plot the four series arranged as in the following

table:

µ1 = 0.5 σ2
1 = 0.5 µ1 = 0.5 σ2

2 = 1.5

µ2 = −0.5 σ2
1 = 0.5 µ2 = −0.5 σ2

2 = 1.5
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1 -

2 -

3 -

4 -

5 -

6 -

7 -

8 -

9 -

10 -

11 -

12 -

13 -

14 -

15 -

16 -

17 -

18 -

19 -

20 -

21 -

22 -

23 -

24 -

clear all

close all

load econ

mu1 = 0.5;

mu2 = -0.5;

sigma21 = 0.5;

sigma22 = 1.5;

t = 1:length(x);

subplot(2,2,1)

y1 = mu1 + sqrt(sigma21) * x;

plot(t,y1)

title( ’Gaussian Process with \mu=0.5 & \sigmaˆ2=0.5’ )

subplot(2,2,2)

y2 = mu1 + sqrt(sigma22) * x;

plot(t,y2)

title( ’Gaussian Process with \mu=0.5 & \sigmaˆ2=1.5’ )

subplot(2,2,3)

y3 = mu2 + sqrt(sigma21) * x;

plot(t,y3)

title( ’Gaussian Process with \mu=-0.5 & \sigmaˆ2=0.5’ )

subplot(2,2,4)

y4 = mu2 + sqrt(sigma22) * x;

plot(t,y4)

title( ’Gaussian Process with \mu=-0.5 & \sigmaˆ2=1.5’ )

8.3 Paths

However, when trying to execute “tutorial.m”, you will probably notice that it does not

run. The reason for this is that it will fail, if the newly created folder “econ” is not in the

MATLAB file (search) path. What you have to do, before starting the program, is to tell

MATLAB about the new program directory. Once this is accomplished, MATLAB will

recognize all files residing in this directory. Proceed as follows:

(1) Choose File −→ Set Path... from the MATLAB menu bar. A new window opens

showing all paths and folders that MATLAB knows.

(2) Next, press the button Add Folder , search for the newly generated folder “econ,”

and mark it by clicking once on it.
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(3) Press OK and notice how the MATLAB search path is updated.

(4) Press Save to save this setting and, finally, quit by clicking Close .

Now your program should run.

9 Functions

Functions are essential the same as programs, but they differ in one fundamental respect.

Programs generate their required input from within, whereas functions require the user

to supply them as input variables. Thus, programs are often considered as stand-alone

functions.

9.1 An Example

Open a new m-file and save it as “mystatistics.m”. Then write in the first lines of your

function:

1

2

3

4

5

6

7

8

9

10

11

12

function [mu, sigma2] = mystatistics(x);

%MYSTATISTICS computes the sample mean and variance.

%---------------------------------------------------

% This function computes the mean and variance

% of a vector of random realizations.

%===================================================

% USAGE: [mu, sigma2] = mystatistics(x)

% OUTPUT: mu = sample mean (scalar)

% sigma2 = sample variance (scalar)

% INPUT: x = data (vector)

%===================================================

% By Your Name, Date.

The buzzword function tells MATLAB that this file is not a program but rather a

function. The expression right after function shows how to call the function. Thus, it

is your personal decision how to define the function name, the inputs, and the outputs. Of

course, you should choose a function name that does not already exist. Expressions after

a %–sign will not be interpreted as commands but as comments. You can add comment

lines anywhere in an m-file. Comments should be used liberally since, in the course of

time, you might not remember anymore what you did in your m-file... and why!
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As you might already have guessed, the objective of our function is to compute (or

estimate) the mean and variance of a random sample,

µ̂ =
1

N

N
∑

i=1

xi and σ̂2 =
1

N − 1

N
∑

i=1

(xi − µ̂)2 ,

which is easily accomplished by

13 -

14 -

15 -

16 -

17 -

18 -

19 -

20 -

21 -

22 -

23 -

n = length(x); % compute sample size

mu = 0; % set initial value for for-loop

for i = 1:1:n

mu = mu + x(i);

end

mu = mu/n; % sample mean

sigma2 = 0; % set initial value for for-loop

for i = 1:1:n

sigma2 = sigma2 + (x(i)-mu)ˆ2;

end

sigma2 = sigma2/(n-1); % sample variance

Before getting to work with mystatistics , type

>> help mystatistics

in the command window. Don’t forget to save mystatistics ! Also try

>> lookfor mean

and

>> lookfor variance

The first help line — the so-called H1 line — is the line that the lookfor –command

looks up and prints if there is a match. Therefore, you should choose a text segment

that contains (i) the important buzzword and (ii) a short explanation about what this

function does. Next, type

>> clear all

>> randn( ’state’ ,23), x = randn(1000,1);

>> [x_mu,x_var] = mystatistics(x)
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in the command window. Of course, MATLAB has its own built-in function for calculat-

ing sample mean and sample variance. Compare your results by calling

>> [x_mu mean(x)]

and

>> [x_var var(x)]

• Exercise 6 •

(a) Write a function named “myfunction” for computing

– the rank,

– the eigenvalues, and

– the principal minors

of a real symmetric matrix!
Hint: Look for MATLAB built-in functions that bear the brunt of computing
ranks, eigenvalues, and determinants. Note that, for any (n×n) square matrix
A, a principal submatrix of A is obtained by deleting corresponding rows and
columns:

A(1×1) = a11 , A(2×2) =

[

a11 a12

a21 a22

]

, . . . , A(n×n) = A .

The determinant of a principal submatrix is called a principal minor.

(b) Test “myfunction” on the following real symmetric matrices:

A =

[

2 −1
−1 1

]

B =

[

1 1
1 1

]

C =

[

1 1
1 −1

]

D =





1 2 3
2 1 3
3 3 1



 E =





1 0 2
0 1 1
2 1 5



 F =









2 0 0 0
0 1 3 0
0 3 1 0
0 0 0 4









.

(c) Can you infer from your results obtained in (b), what the eigenvalues tell you
about singularity (rank deficiency) and positive definiteness of a real symmetric
matrix.
Hint: According to Magnus and Neudecker (1999), p.24, a symmetric (n×n)–
matrix A is positive definite iff the determinants of all principal minors are
positive: det

(

A(k×k)

)

> 0 for all k = 1, 2, . . . , n.

9.2 Functions as Inputs to Functions

Section 9.1 introduced the general setting of functions and their usage in MATLAB.

Moreover, there is a further important application of a function as inputs to other func-

tions. As an example, let us consider the problem of estimating a statistical model for
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the Gaussian white noise processes of Section 8.2 by Maximum Likelihood Estimation

(MLE).

For parametric MLE, we need a reasonable model that comprises all essential char-

acteristics of the Gaussian white noise processes of Section 8.2. Due to the properties

of white noise, such a parametric model is statistical equivalent to the problem of es-

timating the parameters of the underlying distribution from which a random sample is

drawn. This follows immediately from the fact that the random variables (on the sample

path) of any white noise process are independently and identically distributed (iid).8 If

we additionally assume the underlying distribution to be Gaussian, we can apply MLE

in order to determine the mean and variance of the underlying normal distribution. To

be more precise, we assume that all realizations, xi, of our random sample of size n are

drawn from the same normal distribution, Xi ∼ N(µ, σ2), such that

f(xi; µ, σ2) =
1√

2πσ2
exp

{

−(xi − µ)2

2σ2

}

∀ i = 1, . . . , n ,

where µ and σ2 denote the mean and the variance, respectively. For independent random

variables, we can decompose the likelihood (marginal density) function in the following

way:

L(µ, σ2; x1, . . . , xn) = f(x1, . . . , xn; µ, σ2)

= f(x1; µ, σ2) · · · f(xn; µ, σ2) .

This gauges the likelihood that the realizations x1, . . . , xn occur given the presumption

that Xi ∼ N(µ, σ2) which implies that all Xi are identically distributed. This piece of

information can be used to derive a more compact formulation of the likelihood function

using the product operator,

L(µ, σ2) =
n

∏

i=1

1√
2πσ2

exp

{

−(xi − µ)2

2σ2

}

,

where we have omitted the xi’s as arguments of L as they are constants. Thus, the only

variable parts of the likelihood function are the mean and the variance. Intuitively, the

best estimates of µ and σ2 are those values which maximize the likelihood for the given

8The definition of a white noise process requires its increments to be uncorrelated only. Thus, the
condition of independent increments appears to be too stringent. However, if the increments of the
white noise process are normally distributed, then the increments are not only uncorrelated but even
independent.
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random sample (x1, . . . , xn) to occur, i.e.,

µ̂ = argmax
µ∈R

L(µ, σ2)

σ̂2 = argmax
σ2∈R+

L(µ, σ2) .

Since differentiating a product is cumbersome, we simplify the computational burden by

taking the logarithm of L:

ℓ(µ, σ2) ≡ ln
{

L(µ, σ2)
}

= − n

2
ln(2πσ2) − 1

2σ2

n
∑

i=1

(xi − µ)2 .

Then the the first-order conditions read

∂

∂µ
ℓ(µ, σ2)

!
= 0

∂

∂σ2
ℓ(µ, σ2)

!
= 0 .

Basic calculus shows that the optimal or maximum likelihood estimators have closed

forms:

µ̂ =
1

n

n
∑

i=1

xi

σ̂2 =
1

n

n
∑

i=1

(xi − µ̂)2 .

Note that the first estimator µ̂ corresponds to the sample mean. The second estimator

σ̂2 would correspond to the sample variance, if the denominator were n− 1 instead of n.

Since the sample variance is an unbiased estimator of the true variance, we conclude that

the maximum likelihood estimator is a biased estimator of σ2.

The closed-form expression of the ML estimators could be coded in MATLAB which

would provide us with the solution. However, in order to use this example for illus-

trating how to insert a function into another function, we propose a solution based on

one of MATLAB’s numerical optimization routines. In addition to the pedagogical ef-

fect, numerical optimization is an important tool because there are many situations in

econometric analysis where a closed-form solution to first-order conditions does not exist.

We will use the function fminsearch which searches for the unconstrained mini-

mum of a general, nonlinear objective function. In contrast to many other optimization

routines, which are part of the Optimization Toolbox, fminsearch is included in the
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baseline MATLAB package. First, type

>> help fminsearch

in order to learn how it has to be invoked. For the ML problem at hand, the easiest

syntax for calling fminsearch is

[para,fval,exitflag] = fminsearch( ’loglike’ ,para0,[],x)

The first output argument (para ) contains the solution (µ̂ and σ̂2) to our optimization

problem. The second output argument (fval ) contains the value of the log-likelihood

function evaluated at µ̂ and σ̂2. The third output argument (exitflag ) is a binary

variable taking on either 1 (if convergence were successful) or 0 (if convergence failed).

The first input argument (’loglike’ ) specifies the objective function to be used in

the optimization where the name of the function must be supplied as a string variable.

For the ML problem at hand, this boils down to the log-likelihood function ℓ(µ, σ2). It

is important to note that since fminsearch searches for the minimum of an objective

function, we have to multiply the log-likelihood function by -1 in order to turn the mini-

mization into a maximization. The second input argument (para0 ) is a vector containing

the initial or starting values of the variables (µ̂ and σ̂2) over which the optimization takes

place. As general note: In numerical optimization, starting values have to be supplied

which necessitates that the user knows the admissible parameter space. The third input

argument is a structure variable managing the flow and modes of the optimization proce-

dure. However, for this simple problem, there is no need to dwell upon technicalities, so

we use an empty array ([] ) as a placeholder. Then the default setting of fminsearch

applies. The fourth input argument (x) contains (constant) parameters of the objective

function. For the ML problem at hand, µ and σ2 are the variables and x1, . . . , xn are the

parameters of the log-likelihood function.

Consequently, we note that since fminsearch takes care of the computational burden,

all that remains to be done is the coding of the log-likelihood function. Generally, the

objective function has to be supplied to the optimization function as a MATLAB function.

The most flexible form of a function has been presented in Section 9.1. Accordingly, open

an m-file and save it as “loglike.m”. This function should be capable of computing the

value of ℓ(µ, σ2) for some supplied values of µ and σ2 and the random sample x :
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6
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8

9

10
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12
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14

15

16 -

17 -

18 -

19 -

function f = loglike(para,x);

%LOGLIKE log-likelihood function of normal density.

%-----------------------------------------------------

% This function computes the log-likelihood function

% for determining the mean and variance of a normally

% distributed iid random sample via MLE.

%======================================================

% USAGE: f = loglike(para,x)

% OUTPUT: f = value of log-likelihood function (scalar)

% INPUT: para = (1) mean and (2) variance (vector)

% x = data (vector)

%======================================================

% By Your Name, Date.

mu = para(1); % 1.element is the mean

sig2 = para(2); % 2.element is the variance

n = length(x); % determine sample size

f = -n/2 * log(2 * pi * sig2)-sum((x-mu).^2)/(2 * sig2);

f = -f;

A purist might protest that the code of the log-likelihood function should read as

f = -n/2 * log(2 * pi * sig2)-sum((x-mu * ones(size(x))).^2)/(2 * sig2);

since operation x-mu in line 19 is not defined. However, in order to make life easier

MATLAB processes scalar-vector addition by transforming the scalar into a conformable

vector with identical entries.

As an illustration of how to do MLE, we present a program (“mle.m”) which uses the

data simulated from the standard distribution in “econ.mat” for generating realizations

of the Gaussian processes as in Section 8.2. These Gaussian processes are a bit more

general than pure white noise processes as their moments are allowed to differ from those

of a standard normal random variable. According to Section 8.2, we have four parameter

sets to be estimated:

1) µ1 = 0.5 and σ2
1 = 0.5.

2) µ1 = 0.5 and σ2
2 = 1.5.

3) µ2 = −0.5 and σ2
1 = 0.5.
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4) µ2 = −0.5 and σ2
2 = 1.5.

1 -

2 -

3 -

4

5

6 -

7 -

8 -

9 -

10

11

12 -

13

14

15 -

16 -

17

18

19 -

20 -

21

22

23 -

24 -

25

26

27 -

28 -

clear all

close all

load econ

% parameters

mu1 = 0.5;

mu2 = -0.5;

sigma21 = 0.5;

sigma22 = 1.5;

% starting values

para0 = [0 1];

% MLE for 1.parameter set

y1 = mu1 + sqrt(sigma21) * x;

[para1,fval1,exitflag1] = fminsearch( ’loglike’ ,para0,[],y1)

% MLE for 2.parameter set

y2 = mu1 + sqrt(sigma22) * x;

[para2,fval2,exitflag2] = fminsearch( ’loglike’ ,para0,[],y2)

% MLE for 3.parameter set

y3 = mu2 + sqrt(sigma21) * x;

[para3,fval3,exitflag3] = fminsearch( ’loglike’ ,para0,[],y3)

% MLE for 4.parameter set

y4 = mu2 + sqrt(sigma22) * x;

[para4,fval4,exitflag4] = fminsearch( ’loglike’ ,para0,[],y4)

• Exercise 7 •
This MLE, we have presented, is rather a constrained maximization problem than
an unconstrained one since the variance has to be positive, i.e., σ2 > 0. For general
constrained optimization problems, MATLAB’s fmincon is a powerful procedure:

[para,fval,exitflag] = fmincon( ’loglike’ ,para0,[],[],[],[],lb,ub,[],[],x)

(a) Analyze the usage of fmincon and how to implement the bounds −∞ < µ <

∞ and 0 < σ2 < ∞!
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Hint: The absolute value of the smallest possible number in MATLAB is eps ,
whereas the largest possible number is inf .

(b) Write a program that estimates the parameters of the above example by con-
strained MLE!

• Exercise 8 •
A kernel density estimator is a “smoothed” histogram and is defined as

f̂h(x) =
1

nh

n
∑

i=1

K

(

x − Xi

h

)

,

where K(·) is a kernel function and h is the bandwidth parameter that controls for
the degree of smoothing. If the underlying density f(x) is normal with N

(

µ, σ2
)

and K(·) is the Gaussian kernel, i.e.,

K(u) =
1√
2π

exp

(

− u2

2

)

,

then h = 1.059σn−1/5 is the optimal choice which minimizes the integrated mean

squared error. See Silverman (1986), Wand and Jones (1994), and Wasserman (2006)
for more details.

(a) Load “data.mat” and use hist to visualize the absolute frequency of the data!

Hint: The default setting of hist produces an oversmoothed histogram. A
better choice for the number of bins is 0.1n.

(b) Code a function which implements the kernel density estimator!

Hint: The function should have three input arguments: a vector containing
the data, a vector of grid points, and the bandwidth parameter.

(c) Plot the kernel density estimate of “data.mat” and compare it to a plot of a
normal density that is adapted to “data.mat”! What are the implications for
MLE based on the normality assumption?

Hint: Use linspace to generate the vector of grid points and normpdf to
generate the graph of a normal density. For a normal density, the notion of
adaptation means that the first two moments of the normal density and the
first two moments of the density to which it is adapted should be equal.
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