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Roadmap

when implementing the theory of portfolio selection, however, there are issues
doing it the obvious way

the first set of issues is somewhat inherent to the transition from the
idealized framework, originally put forward by Markowitz (1952), to the
choice to be made by a real-world investor, i.e., there are some implicit
“degrees of freedom” and caveats

if this set of issues is settled by making the appropriate assumptions, another
problem arises when trying to estimate optimal portfolios

however, it turns out that the severity of this problem can only be illustrated
after introducing simulation techniques

these techniques help to understand and alleviate the so-called estimation risk
of portfolio selection

lastly, knowing the source of the problem allows us to look into the vast
arsenal of statistical methods for practical alternatives
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The Obvious Thing to Do

flashback: all quantities of interest depend on two parameters only: µ and Σ

use unbiased estimators for their components:

µ̂i =
1

T

T∑

t=1

rt,i

σ̂ij =
1

T − 1

T∑

t=1

(rt,i − µ̂i)(rt,j − µ̂j )

σ̂2
i = σ̂ii

for a sample of returns {rt,i : 1 6 t 6 T , 1 6 i 6 n}
from a theoretical perspective, a more convenient assumption is that these
estimators should be consistent (which they are), plimT→∞

θ̂T = θ, in order
show via the delta method (van der Vaart, 1998, Chap. 3) that properties,
like consistency and asymptotic distributions, of most quantities Φ(θ̂) are
straightforwardly derived from those of the plug-in estimator θ̂
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Caveats I

the mean-variance approach is static, i.e., there is no room for changes
whatsoever

but in economic systems, most things change in the course of time

⇒ do expectations about the future change as well?

if yes, then quantities like E[ rt+1 ] or E
[
(rt+1 − E[ rt+1 ])

2
]

should account
for a change in the portfolio holding period [t, t + 1], i.e., Et[ rt+1 ] or
Et

[
(rt+1 − Et[ rt+1 ])

2
]

⇒ replace unconditional expectations E[ . ] by conditional expectations Et[ . ]

question: but does this matter for real-world applications?

answer: no and yes..

one of the stylized facts of financial markets states that expected (excess)
returns are unpredictable

put differently, the EMH postulates that the random walk with drift is the
best model for (log-)stock prices ⇒ any expectation (be it conditional or
unconditional) of its returns is just a constant
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Caveats II
this is completely different for second moments, i.e., another stylized facts of
financial markets is known as volatility clustering

put differently, variances (and covariances) are time-varying in a way which
exhibits a memory

there are gains to be made if we can predict the “volatility regime” in the
holding period

yet another stylized facts of financial markets states that returns are not
normally distributed, i.e., empirical distributions of returns are leptokurtic
(more peaked around the mean and with fat tails)

parametric distributions allowing for fat tails have the problem that the
variance may not exist, i.e., σ2 = ∞ which is obviously a problem for the
mean-variance approach

outliers (extreme realizations) ⇒ fat tails

it is well known that, in the face of outliers, alertstandard sample moments
like µ̂ and σ̂2 quite unreliable ⇒ fitted N

(
µ̂, σ̂2

)
can be substantially

distorted; see Ruppert (2011, Chap. 4)
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Caveats III
as a remedy, robust alternatives to µ̂ and σ̂2 have been proposed in the
literature

µ̂rob = med(rt)

σ̂rob = 1.4826 · med
{∣∣rt − med(rt)

∣∣
}

see Huber (1981) or Hampel et al. (1986)
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The SP500 Index
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Random-Walk Property and Volatility Clustering in SP500 Returns
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Non-Normality and Fat Tails in SP500 Returns
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Flashback: Relevant Quantities I

for all stocks i = 1, . . . , n, use log-returns:

rt,i = ln

(
Pt,i

Pt−1,i

)
· 100%

returns matrix:

R︸︷︷︸
T×n

=
[

r1 r2 · · · rn

]
=




r1,1 r1,2 · · · r1,n

r2,1 r2,2 · · · r2,n
...

...
...

...

rT ,1 rT ,2 · · · rT ,n
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Flashback: Relevant Quantities II
sample means vector of returns:

µ̂︸︷︷︸
n×1

=




µ̂1

...

µ̂n


 =




T−1
∑T

t=1 rt,1
...

T−1
∑T

t=1 rt,n


 =

1

T




r1,1 · · · rT ,1

...
...

...

r1,n · · · rT ,n




︸ ︷︷ ︸
n×T




1
...

1




︸ ︷︷ ︸
T×1

=
1

T




rT
1

...

rT
n







1
...

1


 =

RT
1T

T
(1)

sample covariance matrix of returns:
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Flashback: Relevant Quantities III

Σ̂︸︷︷︸
n×n

=




σ̂2
1 σ̂12 · · · σ̂1n

σ̂12 σ̂2
2 · · · σ̂2n

...
...

. . .
...

σ̂1n σ̂2n · · · σ̂1n




=
1

T − 1




∑T

t=1(rt,1 − µ̂1)
2 · · · ∑T

t=1(rt,1 − µ̂1)(rt,n − µ̂n)
...

. . .
...

∑T
t=1(rt,1 − µ̂1)(rt,n − µ̂n) · · · ∑T

t=1(rt,n − µ̂n)
2




=
1

T − 1




(r1,1 − µ̂1) · · · (rT ,1 − µ̂1)
...

...
...

(r1,n − µ̂n) · · · (rT ,n − µ̂n)




︸ ︷︷ ︸
n×T




(r1,1 − µ̂1) · · · (r1,n − µ̂n)
...

...
...

(rT ,1 − µ̂1) · · · (rT ,n − µ̂n)




︸ ︷︷ ︸
T×n
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Flashback: Relevant Quantities IV

Σ̂︸︷︷︸
n×n

=
1

T − 1




(r1 − µ̂11T )
T

...

(rn − µ̂n1T )
T



[

r1 − µ̂11T · · · r n − µ̂n1T

]

=:
1

T − 1




r̃T
1

...

r̃T
n



[

r̃1 · · · r̃n

]
=:

R̃
T
R̃

T − 1
(2)

with mean-adjusted returns r̃ i = r i − µ̂i1T = r i − (eT
i µ̂)1T where

eT
i︸︷︷︸

1×n

:= ( 0 · · · 0 1︸︷︷︸
ith

position

0 · · · 0 )

is the ith unit vector
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Flashback: Relevant Quantities V
estimator of the fundamental matrix:

Ω̂ =


 1

T
n Σ̂

−1
1n 1

T
n Σ̂

−1
µ̂

µ̂T
Σ̂

−1
1n µ̂T

Σ̂
−1

µ̂


 =:


 â b̂

b̂ ĉ




with determinant
d̂ := det(Ω̂) = âĉ − b̂2

estimator of the global minimum variance portfolio:

x̂GMVP =
Σ̂

−1
1n

â

µ̂GMVP =
b̂

â

σ̂2
GMVP =

1

â
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Flashback: Relevant Quantities VI
estimator of the minimum variance set:

σ̂2
MVS =

âµ2 − 2b̂µ+ ĉ

d̂

with short-selling: define a grid of points µ ∈ {µmin, . . . , µmax} where µmin and
µmax can be chosen arbitrarily
without short-selling: define a grid of points µ ∈ {µmin, . . . , µmax} where
µmin := min{16i6n} µ̂i and µmax := max{16i6n} µ̂i

estimator of the minimum variance portfolio:

x̂MVS = Σ̂
−1

R̂
(
R̂

T
Σ̂

−1
R̂
)
−1

µ (3)

where

R̂ =
[

1n µ̂

]
and µ =


 1

µ
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Flashback: Relevant Quantities VII
estimator of the tangential (market) portfolio:

x̂m =
Σ̂

−1
˜̂µ

b̂ − ârf

µ̂m =
ĉ − b̂rf

b̂ − ârf

σ̂2
m =

âr2
f − 2b̂rf + ĉ

(b̂ − ârf )2

with the estimator for expected excess returns

˜̂µ :=




µ̂1 − rf

µ̂2 − rf
...

µ̂n − rf




= µ̂− rf 1n
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Flashback: Relevant Quantities VIII
alternatively, once we have computed the (σ, µ)-combinations on the upper
branch of the MVS, i.e., the efficient frontier, the position of the market
portfolio in the (σ, µ)-plane is simply that point on the efficient frontier
which is associated to the maximal value of

µMVS

σMVS

− rf
σMVS

for µMVS > µGMVP
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The Stock Data

downloading each and every stock contained in the SP500 index from Yahoo!
Finance is cumbersome

fortunately, there is a nice Excel macro which does the job (you have to
change the security settings such that the spreadsheet is “trusted”)

⇒ all stock prices should be adjusted to dividend payments and stock splits

time series on the SP500 index itself can be download directly from Yahoo!
Finance

the sampling frequency of all time series is daily

⇒ holding period is one day

the sampling period for all time series is 01/02/2003 — 12/31/2012

⇒ these 10 years of data correspond to T = 2516 observations

deleting all stocks with missing observations (trading halts, etc.), there are
n = 436 stocks available for our portfolio
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The Risk-Free Rate I

with respect to the risk-free rate rf , the overnight London Interbank Offered
Rate (LIBOR) was downloaded from the database of the Federal Reserve
Bank of St. Louis; see page 22

⇒ “The overnight US Dollar (USD) LIBOR interest rate is the average interest
rate at which a selection of banks in London are prepared to lend to one
another in American dollars with a maturity of 1 day.”

⇒ “Libor is the most widely used "benchmark" or reference rate for short term
interest rates.”

however, a Libor time series with thousands of observations is not useful
because it cannot be plotted as (0, rf ) in the (σ, µ)-diagram

instead, use the sample overnight Libors to estimate an average overnight
Libor over the sampling period

flashback: since simple interest rates are stated as annualized rates, we have
to adjust to the daily holding period by assuming that interest is earned
linearly
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The Risk-Free Rate II
⇒ use the following proxy as risk-free interest rate:

rf :=
1
T

∑T

t=1 Libort

365 days
= 0.00524%

however, the choice of rf is no essential issue

in his original paper (with a monthly sampling frequency), Sharpe (1966)
used an annual risk-free rate of 3% derived from secondary-market yields on
10-year US government bonds; see also Ruppert (2011, p. 306)

in the financial industry, Sharpe ratios are usually published by setting rf = 0

idea:

Sharpe ratios should only reflect the pure risk-return trade-off µp/σp of
corresponding portfolios
investors should decide by themselves which risk-free rate suits their purposes
best
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The Overnight Libor
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Mean-Variance Analysis (with Short-Selling)
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MVS for Most Liquid n Stocks (with Short-Selling)
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No Short-Selling I

in the theory part to the mean-variance analysis, we did not cover the general
n-asset case

min
x

xT
Σx

s.t. 1
T
n x = 1

µTx = µ̄

x > 0n

when short-selling is not allowed because it is tough to tackle in an analytical
manner

allowing for corner solutions in optimal portfolio weights requires a more
general approach, known as Karush-Kuhn-Tucker conditions, which nests the
Lagrange multiplier approach; see Sundaram (1999, Chap. 6) or Boyd and
Vandenberghe (2004, Section 5.5.3)

unfortunately, the Karush-Kuhn-Tucker conditions (though analytical) are not
particularly helpful in delivering solutions but rather tell us whether a given
point is a solution or not
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No Short-Selling II
for obtaining numerical solutions, one has to resort to numerical methods
known as quadratic programming

most statistical software package include a function or routine to perform
quadratic programming
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MVS Comparison for Most Liquid 10 Stocks
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MVS Comparison for Most Liquid 50 Stocks
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MVS Comparison for Most Liquid 100 Stocks
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MVS Comparison for Most Liquid 436 Stocks
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Monte Carlo (MC) Simulations I

consider the classical linear regression model

y︸︷︷︸
T×1

= X︸︷︷︸
T×k

β︸︷︷︸
k×1

+ u︸︷︷︸
T×1

(4)

where we make a host of assumptions, i.e.,

rk(X ) = k < T

u
d
= N

(
0T×1, σ

2
IT

)
,

in order to guarantee that the ordinary least-squares (OLS) estimator

β̂ = (XTX )−1XTy (5)

exists and follows the probability law

β̂
d
= N

(
β, σ2(XTX )−1

)

which allows us to derive confidence intervals, t- and F -tests, etc.
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Monte Carlo (MC) Simulations II
unfortunately, these assumptions turn out to be unrealistically stringent
casting doubts on the unbiasedness and efficiency of β̂ and on the validity of
its confidence intervals and tests

for relaxing some of these assumptions, one often resorts to asymptotic
statistics and its limit laws, i.e., the Law of Large Numbers (LLN) and the
Central Limit Theorem (CLT), to establish consistency and asymptotic
normality

one particularly important result is that the normality of β̂ (asymptotically)
carries over even when u is non-normally distributed (given its variance exists)

but there is a price to be paid for this generality: limit laws hold exactly for
T → ∞ and approximately when the convergence has proceeded far enough

in some instances, we have only a small sample size T , and even when T is
large, we usually do not know if the convergence has proceeded far enough to
provide a good approximation

⇒ we have to distinguish between the exact, finite-sample distribution of β̂
(which depends upon and holds for a fixed T < ∞ only) and the asymptotic
distribution of β̂ (“T = ∞”)
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Monte Carlo (MC) Simulations III
thus, in cases where we suspect the asymptotic approximation to the
(unknown) finite-sample distribution to be inaccurate, we need alternative
ways of approximation:

the first proposal in the literature is purely theoretical and refers to so-called
Edgeworth and saddlepoint approximations which are refinements of the
asymptotic distribution allowing for more flexibility of the approximation to
accommodate features of the finite-sample distribution; see Hall (1992),
Rothenberg (1984), and Ullah (2004)
the second proposal is to use MC simulations to approximate the finite-sample
distribution

while the first approach is more general (laying out all required assumptions
explicitly), it is much more complicated and harder to compute than MC
simulations

the popularity of MC simulations stems from its simplicity and wide
applicability which only requires that we are able to simulate a model (or
data-generating process) a larger number of times
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Monte Carlo (MC) Simulations IV
of course, the drawback of MC simulations (compared to the first approach)
is that they only hold for the simulated models and that they cannot be
generalized

⇒ MC simulations are case-by-case studies
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How and Why MC Works: An Example I

suppose that we have no clue about the finite-sample and asymptotic
properties of β̂

in what follows, we will motivate and illustrate the usage of MC simulations
to shed some light on these properties

a first try would be to apply β̂ to some real-world data

however, this is not helping because we neither know whether the underlying
model (4) is appropriate to be fitted to the data nor, if it were true, whether
the true parameter β is unknown which prevents us from a comparison

a better way to analyze the properties of β̂ is by simulating an artificial data
set from model (4) which is completely known

but before we can start any simulation the free parameters in model (4) have
to be fixed:

the number of exogenous regressor, say, k = 3
the sample size, say, T = 25
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How and Why MC Works: An Example II
set

β =




1.5

−0.5

1.75


 and σ2 = 1.25

lastly, in order to isolate the source of randomness, we assume that the
regressor matrix X in (4) is fixed, i.e., deterministic ⇒ this allows us to
simplify the notation by using E[ . ] instead of E[ .|X ]

in the subsequent simulations, we use the same regressor matrix X (for same
T ) generated by the following scheme:

the first column of X corresponds to a (T × 1) ones-vector 1T×1

the second column of X corresponds to a (T × 1) vector of iid realizations
drawn from the uniform distribution Unif(0, 1)
the third column of X corresponds to a (T × 1) vector of iid realizations
drawn from the standard normal distribution N( 0, 1 )
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How and Why MC Works: An Example III
thus, the randomness of β̂ can be traced back to u by substituting (4) in (5):

β̂ = β + (XTX )−1XTu

β̂ − β = (XTX )−1XTu

to measure the discrepancy between β̂ and β, we use the usual Euclidean
norm, i.e.,

||u|| =
√

u2
1 + · · ·+ u2

T

for example, if we generated a u(j) with a large ||u(j)||, then the discrepancy
||β̂ − β|| tends to be large as well

this happens when u(j) represents an extreme realization from
N
(
0T×1, σ

2IT

)

⇒ it turns out that the influence of these “bad” simulated data can be averaged
out by repeated simulations (or resampling)
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How and Why MC Works: An Example IV
suppose we have drawn m samples u(1), . . . , u(m) from N

(
0T×1, σ

2IT

)
and

subsequently computed y (j) and β̂
(j)

with j = 1, . . . ,m such that

β̂
(1)

= β + (XTX )−1XTu(1)

...

β̂
(m)

= β + (XTX )−1XTu(m)

can be averaged over all m equations:

1

m

m∑

j=1

β̂
(j)

=
1

m

m∑

j=1

β +
1

m

m∑

j=1

(XTX )−1XTu(j)

= β + (XTX )−1XT


 1

m

m∑

j=1

u(j)


 (6)
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How and Why MC Works: An Example V
notice that (6) is the sample counterpart of

E
[
β̂
]
= β + (XTX )−1XTE[ u ]

which corresponds to

E
[
β̂
]
= β

because E[ u ] = 0T×1, by construction

the only requirement for this result to hold is that

1

m

m∑

j=1

u(j) p−→ E[u ]

which, by the weak LLN, holds whenever E[u ] < ∞
⇒ this is the basic idea of MC simulations!

assume we have generated an MC sample of estimates
{
θ̂(j)

}m

j=1
for a scalar

parameter θ
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How and Why MC Works: An Example VI
a measure of unbiasedness of θ̂ is the MC sample mean

¯̂θ :=
1

m

m∑

j=1

θ̂(j)

a measure of dispersion of θ̂ about its sample mean is the MC sample standard
deviation

ŜtD
[
θ̂
]
:=

√√√√ 1

m

m∑

j=1

(
θ̂(j) −

¯̂
θ
)2

a combined measure of bias and estimation error of θ̂ is the MC sample
mean-squared error

M̂SE
[
θ̂
]
:=

(
¯̂θ − θ

)
2

+
1

m

m∑

j=1

(
θ̂(j) − ¯̂θ

)
2

= B̂ias
[
θ̂
]
2

+ ŜtD
[
θ̂
]
2
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How and Why MC Works: An Example VII
thus, for m → ∞, we obtain

¯̂θ
P−→ E

[
θ̂
]

ŜtD
[
θ̂
]

P−→ StD
[
θ̂
]

M̂SE
[
θ̂
]

P−→ MSE
[
θ̂
]

although m → ∞ is impossible for numerical simulations on a computer, we
can nevertheless expect that these convergence results to hold pretty well for
large m, say m = 1000

as an indication of weak consistency, we need to find evidence that

M̂SE
[
θ̂
]
→ 0

as T → ∞ because “
m.s.−−→” ⇒ “

P−→”
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How and Why MC Works: An Example VIII
as an indication of convergence in distribution, we need to find evidence that
the nonparametric kernel density estimate of a MC sample for θ̂ converges to
the asymptotic distribution of θ̂ as T → ∞
digression: the CLT for β̂ states that

√
T (β̂ − β)

d−→ N
(

0k×1, σ
2(XTX )−1

)

or
β̂

asy
= N

(
β, σ2(XTX )−1/T

)
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MC Results: Classical Linear Regression Model

β̂1 β̂2 β̂3

T
=

2
5

¯̂
βi 1.4924 -0.4743 1.7429

ŜtD 0.4726 0.8544 0.1880

M̂SE 0.2234 0.7307 0.0354

T
=

7
5

¯̂
βi 1.5040 -0.5164 1.7510

ŜtD 0.2558 0.4457 0.1167

M̂SE 0.0655 0.1990 0.0136

T
=

1
5
0

¯̂
βi 1.4948 -0.4928 1.7482

ŜtD 0.1730 0.3000 0.0861

M̂SE 0.0300 0.0901 0.0074

T
=

5
0
0

¯̂
βi 1.5026 -0.5066 1.7490

ŜtD 0.0951 0.1705 0.0505

M̂SE 0.0091 0.0291 0.0025
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Density Comparison (CLT=red, MC=blue)
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MC Simulation: Non-Normal Error Terms

now, let us analyze the effects of non-normal u

assume that the error terms are iid draws from a non-central t-distribution,
i.e., ∀ t = 1, . . . ,T

ut
iid
= tν,δ

ν is the parameter of the degrees of freedom

the smaller ν the more leptokurtic tν,δ

the variance of tν,δ even does not exist for ν < 2
tν,δ converges to a normal distribution for ν → ∞

δ is the non-centrality parameter, i.e., the distribution is centered at the
origin or E[ tν,δ ] = 0 when δ = 0

consider two cases:

1) ν = 4 and δ = 0
2) ν = 4 and δ = 1

question: what do you conclude?
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MC Results: u
iid
= tν,δ with ν = 4 and δ = 0

β̂1 β̂2 β̂3

T
=

2
5

¯̂
βi 1.4850 -0.4920 1.7690

ŜtD 0.6860 1.2406 0.2737

M̂SE 0.4708 1.5392 0.0753

T
=

7
5

¯̂
βi 1.4925 -0.4970 1.7477

ŜtD 0.3446 0.5952 0.1679

M̂SE 0.1188 0.3543 0.0282

T
=

1
5
0

¯̂
βi 1.4995 -0.5111 1.7481

ŜtD 0.2483 0.4302 0.1184

M̂SE 0.0616 0.1852 0.0140

T
=

5
0
0

¯̂
βi 1.4928 -0.4874 1.7470

ŜtD 0.1367 0.2417 0.0713

M̂SE 0.0188 0.0586 0.0051
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Density Comparison (CLT=red, MC=blue)
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MC Results: u
iid
= tν,δ with ν = 4 and δ = 1

β̂1 β̂2 β̂3

T
=

2
5

¯̂
βi 2.8980 -0.4878 1.7632

ŜtD 0.7289 1.3123 0.2913

M̂SE 2.4858 1.7224 0.0851

T
=

7
5

¯̂
βi 2.9131 -0.5117 1.7668

ŜtD 0.4150 0.7232 0.1832

M̂SE 2.1692 0.5231 0.0338

T
=

1
5
0

¯̂
βi 2.9091 -0.5048 1.7469

ŜtD 0.2771 0.4625 0.1340

M̂SE 2.0622 0.2140 0.0180

T
=

5
0
0

¯̂
βi 2.9030 -0.5022 1.7554

ŜtD 0.1531 0.2607 0.0768

M̂SE 1.9918 0.0680 0.0059
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Density Comparison (CLT=red, MC=blue)
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MC Simulation: Estimation Error of MV Approach I

now, we illustrate the usage of MC techniques to get an idea of the
estimation error when the plug-in estimator is applied to the MV approach

at this stage, we stick to all assumptions underlying the MV approach, i.e.,
returns are drawn from a multivariate normal distribution with parameters µ0

and Σ0:

r t︸︷︷︸
n×1

iid
= N(µ0,Σ0 )

where rT
t := ( rt,1 · · · rt,n )

again, since the true parameters, µ0 and Σ0, of the data-generating process
are unknown, potential deficiencies of the plug-in estimator cannot be
evaluated
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MC Simulation: Estimation Error of MV Approach II
the solution is to set

µ0 := µ̂

Σ0 := Σ̂ ,

where µ̂ and Σ̂ are computed from real data, and to simulate m iid samples

r
(1)
t , . . . , r

(m)
t from N(µ0,Σ0 )

since any basic (pseudo-)normal random number generator can produce
arbitrary arrays of iid realizations of standard normal variables, the only
challenge here is to introduce the dependence structure between stock
returns in r t implied by Σ0

⇒ this works pretty much as in the scalar case, except that we need a
multivariate version of the square root of a variance
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MC Simulation: Estimation Error of MV Approach III
Cholesky decomposition: any symmetric, positive definite matrix Σ0 can be
uniquely decomposed as

Σ0 = CTC

where C is an upper triangular matrix which can be interpreted as the
square-root matrix of Σ0

then, r t
iid
= N(µ0,Σ0 ) can be computed via

r t︸︷︷︸
n×1

= µ0︸︷︷︸
n×1

+ CT
︸︷︷︸
n×n

z︸︷︷︸
n×1

(7)

where we only have to simulate z
iid
= N( 0n×1, I n )
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MC Simulation: Estimation Error of MV Approach IV
to see that (7) does the job, note that r t is multivariate normally distributed,
because it is a linear combination of normally distributed random variables in
z , with mean

E[ r t ] = E
[
µ0 + CTz

]
= E[µ0 ] + E

[
CTz

]
= µ0 + CT E[ z ]︸︷︷︸

=0n×1

= µ0

and covariance matrix

E
[
(r t − µ0)(r t − µ0)

T
]
= E

[
(µ0 + CTz − µ0)(µ0 + CTz − µ0)

T
]

= E
[
CTz(CTz)T

]
= E

[
CTzzTC

]

= CT E
[
zzT

]
︸ ︷︷ ︸

=In

C = CTC = Σ0

although (7) tells us how to simulate along the cross-sectional dimension of
the data, we also need to simulate its time series observations
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MC Simulation: Estimation Error of MV Approach V
to this end, transpose (7),

rT
t︸︷︷︸

1×n

= µT
0︸︷︷︸

1×n

+ zT
︸︷︷︸
1×n

C︸︷︷︸
n×n

,

simulate this T -times, and stack all T time series observations

R︸︷︷︸
T×n

= M︸︷︷︸
T×n

+ Z︸︷︷︸
T×n

C︸︷︷︸
n×n

(8)

where Z is a (T × n) matrix of iid realizations drawn from a standard normal
distribution

M =




µT
0

...

µT
0








T times

simulate (8) in order to generate m samples R(1), . . . ,R(m) which are used in

(1) and (2) to compute µ̂(j) and Σ̂
(j)

for j = 1, . . . ,m
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MC Simulation: Estimation Error of MV Approach VI
in the following MC simulations, we analyze two important quantities

the first one is functional: the MVS (or the efficient frontier)
the second one is scalar: the market portfolio’s Sharpe ratio srm
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MC Simulation: Parameter Comparison for n = 10 and m = 250

µ
T
0 =

(

−0.0321 0.0160 0.0167 0.0056 0.0173 0.0328 0.0108 0.0447 0.0064 0.0246
)

µ̂
(j)

T
=
(

−0.0368 0.0139 0.0113 0.0027 0.0141 0.0283 0.0070 0.0412 0.0047 0.0216
)

Σ0 =



































12.9920 3.2504 4.7579 4.5281 3.0903 7.9347 2.6418 2.8773 2.4008 8.7937

3.2504 4.2127 2.5211 2.0216 2.5481 2.8176 2.0916 2.4087 1.3831 2.5522

4.7579 2.5211 9.3836 2.7482 2.5830 3.5506 2.1450 2.2811 1.5076 3.8168

4.5281 2.0216 2.7482 3.8903 2.0742 3.5659 1.6626 1.9062 1.4897 3.6964

3.0903 2.5481 2.5830 2.0742 4.0095 2.7472 2.1082 2.3400 1.3486 2.6207

7.9347 2.8176 3.5506 3.5659 2.7472 7.5972 2.3025 2.5591 1.9467 6.6633

2.6418 2.0916 2.1450 1.6626 2.1082 2.3025 2.9597 2.0033 1.1844 2.2235

2.8773 2.4087 2.2811 1.9062 2.3400 2.5591 2.0033 3.9275 1.2618 2.2610

2.4008 1.3831 1.5076 1.4897 1.3486 1.9467 1.1844 1.2618 2.3822 1.9222

8.7937 2.5522 3.8168 3.6964 2.6207 6.6633 2.2235 2.2610 1.9222 8.6770



































Σ̂
(j) =



































13.0130 3.2357 4.7750 4.5363 3.0857 7.9431 2.6373 2.8752 2.4014 8.8199

3.2357 4.2089 2.5218 2.0110 2.5481 2.8030 2.0907 2.4065 1.3860 2.5507

4.7750 2.5218 9.3972 2.7531 2.5874 3.5612 2.1443 2.2866 1.5147 3.8309

4.5363 2.0110 2.7531 3.8885 2.0724 3.5647 1.6645 1.9035 1.4926 3.7058

3.0857 2.5481 2.5874 2.0724 4.0119 2.7451 2.1129 2.3399 1.3499 2.6258

7.9431 2.8030 3.5612 3.5647 2.7451 7.5936 2.2955 2.5500 1.9462 6.6754

2.6373 2.0907 2.1443 1.6645 2.1129 2.2955 2.9637 2.0052 1.1857 2.2231

2.8752 2.4065 2.2866 1.9035 2.3399 2.5500 2.0052 3.9231 1.2660 2.2648

2.4014 1.3860 1.5147 1.4926 1.3499 1.9462 1.1857 1.2660 2.3817 1.9268

8.8199 2.5507 3.8309 3.7058 2.6258 6.6754 2.2231 2.2648 1.9268 8.7035
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MC Simulation of Efficient Frontier (n = 10, m = 250)
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MC Simulation of Efficient Frontier (n = 50, m = 250)
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MC Simulation of Efficient Frontier (n = 100, m = 250)
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MC Simulation of Efficient Frontier (n = 436, m = 250)
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MC Simulation of Sharpe Ratios (m = 250)
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