Problem Set 1: Expected Utility

- a) A person with initial wealth $w_0 > 0$ has a utility function of the form $U(W) = \ln(W)$. She is offered the opportunity to bet on the flip of a coin that has a probability of p of coming up heads. If she bets $x \ (x \ge 0)$, she will have $w_0 + x$ if heads comes up and $w_0 - x$ if tails comes up.
 - i) Solve for the optimal x^* as a function of p.
 - ii) Does the investor in this example exhibit decreasing absolute risk aversion?
- b) A person with initial wealth $w_0 = 4 \in$ has a utility function of the form $U(W) = \sqrt{W}$ and owns a lottery ticket that will be worth $x = 0 \in$ with probability p = 0.5 and worth $x = 12 \in$ otherwise.

What is the lowest price π_{min} at which she would sell the ticket in order to avoid gambling?

c) Consider two agents A and B with quadratic utility functions

$$U_i(W) = W - \frac{\beta_i}{2}W^2, \quad i = A, B \tag{1}$$

where $\beta_A = 0.5$ and $\beta_B = 0.75$. Both agents have initial wealth $w_0 = 1$. They have to invest this wealth in a portfolio of two risky assets with *net returns*¹ R_1 and R_2 . It is known that $E[R_1] = \mu_1 = 0.25$, $E[R_2] = \mu_2 = 0.05$, $Var[R_1] = \sigma_1^2 = 1$ and $Var[R_2] = \sigma_2^2 = 1.5$. The returns are uncorrelated, i.e., $\rho_{12} = 0$.

- i) Show that agent B is more risk averse than agent A according to the Arrow-Pratt measure of absolute risk aversion.
- ii) Derive the optimal portfolio weights of the first asset for both individuals. Let these be denoted by x_A^* and x_B^* for agents A and B, respectively.

¹If P_t is the price of the asset at time t, then the net returns is $r_t = (P_t - P_{t-1})/P_{t-1}$, and the gross returns is $R_t = 1 + r_t = P_t/P_{t-1}$

,

- iii) The results show that the more risk averse individual invests less in the asset with the lower variance. Is this in conflict with intuition?
- d) A person with initial wealth $w_0 > 0$ and utility function $U(W) = \ln(W)$ has two investment alternatives: A risk-free asset, which pays no interest (e.g. money), and a risky asset yielding a net return equal to $r_1 < 0$ with probability p and equal to $r_2 > 0$ with probability 1 - pin the next period. Denote the fraction of initial wealth to be invested in the risky asset by x. Find the fraction x which maximizes the expected utility of wealth in the next period. Denote this solution by x^* . What is the condition for $x^* > 0$?
- e) Now consider a problem similar to that in (d), but the utility function of the investor is $U(W) = -\exp(-cW), c > 0$, and the return of the risky asset is normally distributed with mean μ and variance σ^2 .

Find the fraction x which maximizes the expected utility of wealth in the next period. Hint: Remember the moment-generating function of the normal distribution:

$$M_X(t) = E[e^{tX}] = \exp[t(\mu + t\sigma^2/2)].$$

f) An investor with $U(W) = \ln(W)$ has to decide between two lotteries:

payout
$$L_1$$
:
$$\begin{cases} 1 \in & \text{with probability 0.8} \\ 100 \in & \text{else} \end{cases}$$
payout L_2 :
$$\begin{cases} 10 \in & \text{with probability 0.99} \\ 1000 \in & \text{else} \end{cases}$$

with $E[L_1] = 20.8$, $Var[L_1] = 1568.16$, $E[L_2] = 19.9$, $Var[L_2] = 9702.00$.

Show that the choices made upon expected utility theory or mean-variance analysis do not coincide in this case!

g) State some conditions when mean-variance analysis is consistent with expected utility theory.