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Abstract EWMA variances of the DJIA based on non-overlapping 10-day log-returns (01-Jan-2010 to 02-Jun-2017; Window length: 100 bi-weekly returns)

An important task in financial and insurance risk manage-
ment is the specification of the regulatory risk capital re-
quired to cover potential future losses. To quantify that

» Daily sequence of estimated variances (0(210) . \)tez, bi-weekly sequences of estimated variances (0(210) 10617 \tez, for 1 <7 <10 and the ACF of the daily sequence
of estimated variances.

buffer, institutions are obliged to estimate and predict cer- 25
tain risk measures. To do so, regulation typically prescribes . ol
both forecasting horizon and reporting frequency, but does | 2
not specify the sampling scheme for the data used for esti- L | Z;ﬂ;jﬁj:ﬁ:fj _ osf 1
mation. In this paper, we demonstrate that the scheme with 3 ey M
which data are sampled crucially affects variance and, thus, Nb:;flo : {| o L:: 04r
risk estimates. We show that temporal sequences of variance :Zig;ig:;f;;; 2 L
estimates, in cases where the reporting frequency is higher I i y *Z%zijziﬁf;:i '
than the sampling frequency of non-overlapping returns, will o | | ol
suffer from spurious seasonality. The implications of spurious mewwwwwwwméo 3 o
seasonality for risk management are discussed in the context | | | | | | 139" | | | | | | 11 02 x x x x
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of the Basel Il rules for banking regulation. We present a ¢

boundary-corrected, exponentially-weighted moving-average » We analyze time series properties of sequences of risk estimates with a special focus on variances.
version of a two-scale variance estimator to overcome the

) _ » We determine consequences of the implicit overlap if one reports and estimates risk measures on a higher frequency than the aggregation horizon of the
problem of spurious seasonality.

non-overlapping return data used for each estimation. = Spurious seasonality in temporal sequences of estimated variances.

Sampling schemes for estimating h-day risk measures Setup for the visualizations and the simulation study
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i IR o o o T T t T » Assume a GARCH(1,1) process for the daily return process (r;):cz with normal innovations:
| ra] re re = Ot€t, and 02 =0.01+0.05r7 ; + 0.9402_,
) N T » Aggregation frequency: h — 10 (Basel Il rules BCBS (2016))
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» Rolling-window size: A = 100 (= hA = 1000 daily observations; approximately four years of data)
» Overall sample size: 8 x 250 = 2000 daily return observations; approximately 8 years of data
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(b) Sequence of EWMA variance estimates (0(210) )tz and its ACF
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Variance estimators as quadratic forms 1200 1400 t1600 18002000 ;
0 - 0 . . /
» O-periods vector of daily returns up to time th._tl‘m = [r—s41s Fe—542, - - - Fe—1, It] Vefiies coimane Baced) o erElE i e s
» h-day returns: r(), = In(P;) —In(P;_p) = > g rij = Lyres
» A-periods vector of non-overlapping h-day returns up to time t (with H = Ia ® 1,): » Two-scales sample variance, proposed in the (ultra-)high-frequency context (Zhang et al. 2005):
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F(h),t,A = [r(h),t—h(A—l)a F(h),t—h(A—2)5 - - -5 I(h),t—h; r(h),t] = H/rt,hA _5 1, 1 ,
: : . : : : T(h),t = ;rt,hAQ(h),Aft,hA + h Z Ve j h(a—1)Q(n).a-1Ft—j n(a-1)
» Variance estimators as quadratic forms in r; ya (e.g., sample or EIWMA variance estimator): -
{0(2,,)7,_; = r;hAQrt,hAJ » We introduce a boundary-corrected EWMA version of the two-scales variance estimator.
» Define the two matrices K, L € R"M+092 for ¢ > 0: Visualization of quadratic form-based variance estimators
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» For quadratic form based variance estimators it follows: " .
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Theorem . ~D .
_ Sequence of boundary-corrected two-scales EWMA variances (0(10) \Jtez and its ACF
Let (x;)tez be a stochastic process with E(|x;|') < oo, fort € Z and i < 4. For ty,ty, t3,t4 € Z with Vi, j € w
t1, to, t3, ta}: [ £ j, we assume h = 10 fixed
{ } : 3 h=10 & A = 100 1l
E(xt,) = 0, E(x¢, X, xt,%t,) = 0, E(xtlxtzxt3) =0, and ]E(thxt2) = 0. (%) 30 ‘ ‘ ‘ ‘
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Let X = [xq,...,x,] and define X** = X ® X = [xZ,...,x?]. Furthermore, define vector py2c € R™' and 25 |
matrices Xx, Xy20 € R™" by 20| | S 06
/ 20 20320’ / ~ : —h=10& A =25
Yx = E(XX), pyeo =E(X7) and Xyoo = E(XTXT) — pyoo pyoo, Zie & 04 [ R=10& A =50
15 ¢ h=10 & A =100
- . . AN — L,L‘
respectively. Then, for symmetric matrices A, B € R™", we have . " 2 0.2
Cov(X'AX, X'BX) = tr(C(Xy2e + uxz@u;@@)) — tr(AXx)tr(BXx), | A ol
with C =ab’' + 2A © B ® (1,1, — 1,), where a = diag(A) = (A ® 1,)1, and b = diag(B) = (B © 1,)1,,. 0 | | | | 02 | | | |
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Corollary ¢ 14
Let (rt)tcz, be a weak white noise2process fulfilling the moment cona’it/:ons (%) stated in the Theo;em. l\/loreove_r, Boundary-corrected two-scales EWMA variances of the DJIA
let 0 = Var(r,) = E(r?) and rt%AM = repaee © Fepnse, and define vector preo € RMHXL and matrix
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respectively. Then, considering variance estimates of the form 0(2,7) ;= r. ,AQrenn, the autocovariance of the

series (0(2h) Jeez for £ >0 is given by
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The following processes satisfy the moment conditions () of the Theorem:
» Gaussian white noise process, if ;1 =0
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