Working with financial data:
regression analysis and curve fitting

Table of Contents

... 1
REQUITEA FUNCLIONS ... ettt et e et e e et e e e e eanaaees 1
Load NiStOrIC DAX PIICES ...ttt ettt ettt e e e e e et e et e et e e et e e ean e eannas 1
PIOttiNG fINANCIAl aLAn et e et e e e 3
(oo [Lor= BT oo (o] oo [P UTTPPT 4
REGIESSION ANAIYSIS - ettt ettt et e e e et e et e e eaans 12
(07N . PP TSP PP PP 18
Stock price prediction based on curve fittingc..ooiuniiiiiii e 20

Christian Groll
Seminar fir Finanzokonometrie, Ludwig-Maximilians-Universitat Minchen.

All rights reserved.

This is the second part of the MATLAB course. Here we will show how to download real data and how
this data can be further processed.

Then, asfirst application, we will examine whether some theoretical relationships between risk and return
can be found in german stock data. This analysis will be based on regression models.

Subsequently, we will try to find deterministic trendsin stock market data based on curvefitting approach-
es. Only the next script will show common approaches to modelling of stock market returns as stochastic
variables.

Required functions

hi st _stock_data
processDat a

LPPL

LPPLfit

constr Func

LPPLi nteractively

Load historic DAX prices

The following code provides an example of the usage of the function hist_stock_data, which is able to
download historic stock prices and trading volumes based on the data provided by Y ahoo!finance. In order
to make the data comply with our requirements, some additional treatments are needed first.

% specify ticker synmbol as string variable
tickSym = ""GDAXI"; % speci fy stock data of interest

% speci fy begi nning and ending as string vari abl es
dat eBeg = ' 01011990"; % day, nonth, year: ddmyyyy

Working with financial data: re-
gression analysis and curve fitting

dateEnd = ' 01072013";

Alternatively, dates also can be determined dynamically, with regard to today. Since the MATLAB com-
mand "today" measures time on a numeric scale, the value displayed is a number.

% di spl ay date of today

fprintf(['\nToday is ' nunRstr(today) '.\n'])
% Note: fprintf is able to display a string to the comand
% wi ndow, wi thout having to assign it to a variable or MATLAB' s
% tenporary placehol der "ans" (short for "answer") first. In
% order to get the input string, in this case we first have to
% concatenate snaller strings into one |arge string.

Today is 735469.

In order to make the numeric data value more meaningful, we can transform it with the function datestr()
into a date expression. As a string, this can be directly assigned to the variable declaring the end of the
data period requested.

% dynam ¢ assignment to end of period
dat eEnd = datestr(today, 'ddnmyyyy') %today as |ast date

dat eEnd =
23082013
However, instead of using "today", you also can use the command "date", which returns the date as string

right away.
fprintf(['\nToday is ' date '.\n'])

Today is 23-Aug-2013.

In order to download datafrom Y ahoo! finance, we make use of thefunction hist_stock data. Thisfunction
can be found at the MATLAB File Exchange at http://www.mathworks.com/matlabcentral /fileexchange/.
The File Exchange is a place where users can find and share content related to MATLAB devel opment.

% | oad data
daxCrude = hist_stock data(dateBeg, dateEnd, tickSyn);

The function hist_stock_data returns a structure variable. A more detailed insight into the formatting of
the output can be achieved with queries.

daxCr ude
exanpl eDat eEntri es = daxCrude. Date(1: 4)

daxCrude =

Ti cker: '"GDAXI'
Date: {5760x1 cell}
Open: [5760x1 doubl €]
Hi gh: [5760x1 doubl €]
Low. [5760x1 doubl e]

http://www.mathworks.com/matlabcentral/fileexchange/

Working with financial data: re-
gression analysis and curve fitting

Cl ose: [5760x1 doubl e]
Vol ume: [5760x1 doubl e]
Adj Cl ose: [5760x1 doubl e]

exanpl eDateEntries =

' 2013-08- 22"
'2013-08- 21"
' 2013- 08- 20'
'2013-08-19'

As the second query shows, historic prices are ordered with latest observations first. This configuration
is disadvantageous for further work, since plotting of the prices would show the latest observations to
the left. Moreover, instead of storing the dates as a cell array of string variables, we will achieve more
flexibility if we store dates as serial dates, which is the same conversion we already encountered with the
today command. In this numeric scale, each date is assigned to a uniquely specified number. As anchor
point of this system, January 1st, 0000, is assigned to the value one.

fprintf(['Nunber 1 is equal to the date ' datestr(1l) '.\n'])

Nunber 1 is equal to the date 01-Jan-0000.

In order to switch between dates given as strings and numeric serial datesthe functionsdatestr and datenum
can be used. Now we want to convert the date strings to serial dates.

seri al Dat es = dat enunm(daxCrude. Date, 'yyyy-nmdd');
% second argunent specifies input format of string dates

In accordance with common convention prices and dates shall be arranged in increasing order, with most
recent data at the end. Instead of manually encoding afor-loop, the MATLAB function flipud can be used
to flip both matrices upside down. The results will be assigned to fields of a new structure variable called
dax.

%flip nost recent entries to the end
dax.dates = flipud(serial Dates); %initializes structure dax
dax. prices = flipud(daxCrude. d ose);

Plotting financial data

When plotting financial data, we usually want the x-axisto be denoted in dates instead of numeric values.
This can be done with help of the command "datetick”, which interprets values of the respective axis as
serial dates, and converts the labels of the individual ticksinto meaningful date strings.

Further adjustments to graphical representations can be achieved by manual configuration of figure sizes,
aswell asadditional graphicsin onefigurewindow. Both conceptsare appliedin thefollowingillustration.

figure('position' ,[50 50 1200 600]) %create gray w ndow, |eft
% corner at |atitude 50,
% hei ght 50, with width 1200
% and hei ght 600

subplot (1, 2, 1); % I nclude two different white wi ndows within
%the gray figure wi ndow. 1,2 denotes
% arrangenent (one row, two colums of white

Working with financial data: re-
gression analysis and curve fitting

% wi ndows), while the |ast nunber (1) denotes
% the currently used w ndow.

% use plot command w thout further adjustnents

pl ot (dax. prices) % since no x-values are specified, NMATLAB
% aut omati cal ly nunbers observations from1 to
% nurel (dax. dat es).

subplot (1, 2, 2);

pl ot (dax. dat es, dax. prices)

datetick 'x' % exact format of date | abels can be chosen wth
% additional input, e.g. try datetick('x', 29) and
% datetick('x", 10)

x| abel (' dates')

yl abel (" prices")

title(' historic DAX val ues')

% crop x-axis to relevant size only
set(gca, 'xLim,[dax.dates(1l) dax.dates(end)])

historic DAX values
9000 T T T T T 9000 T T

8000 8000

7000 7000
6000

6000

5000 5000

prices

4000 4000

3000 3000

2000 2000

1000 1000

I I L I L I L I L
a 1000 2000 3000 4000 5000 6000 1995 2000 2005 2010
dates

As can be seen at the command line used to crop the x-axis, though MATLAB renders the x-axis labels
to date strings, it still needs references denoted in numeric values. That is, it is not possible to directly
tell MATLAB to restrict the axis to 01.01.2000 to 31.12.2002 for example. Indexing with date stringsis
generaly not possible. Hence, simple graphical modifications may become quite cumbersome. As first
example, the maximum value during the period shall be highlighted with a red point. The general way
to do this will be to first find the entry with the highest point in the price vector, which will be given as
index value relative to the price matrix. Then, the index has to be converted into the respective index of
the serial datesvector. In most cases, lengths of price and serial dates vectorswill coincide, so that nothing
needs to be done in this step. At last, thisindex is used to get the value of the seria dates vector at the
respective entry.

Logical indexing

In order to find certain specified values in a given matrix, MATLAB usually makes use of the concept
of logical indexing. In logical notation, a value of zero represents "no", while a value of "1" has to be

Working with financial data: re-
gression analysis and curve fitting

interpreted as "yes'. Hence, for example, when checking whether the entries of a matrix fulfill a given
condition, MATLAB checks the condition on each entry, and returns alogical matrix of same size filled
with zeros and ones.

%init matrix
matr = [1 2 3 4 5 6]

% check if entries are greater than 3
greater Than3 = matr >3

% matrix greaterThan3 is |ogical variable
| ogi cal Check = i sl ogical (greaterThan3)

gr eat er Than3

0 0 0 1 1 1
| ogi cal Check =
1

Such logical matrices created from logical or relational operations can be used to extract values of agiven
matrix. However, these extracted values are always returned arranged in vectors, so that information about
the position in the original matrix is lost.

% get val ues greater than 3
val uesGreater3 = matr (greaterThan3)

val uesG eater3 =

4 5 6

In order to compare numerical values, MATLAB uses relational operators.

% equal to

equal Three = (matr == 3) % since single equal signs are already
% used for assignments, MATLAB notati on
%requires two equality signs to check
% for equality

% | ess or equal
| essEqual Three = (matr <= 3) % greater or equal: >=

% not equal to
not Equal Three = (matr ~= 3)

Working with financial data: re-
gression analysis and curve fitting

equal Three =

0 0 1 0 0 0

| essEqual Three =

1 1 1 0 0 0

not Equal Three =

1 1 0 1 1 1

Matrix manipulation also can be done based on logical indexing. For example, set each value of matr
below three to zero.

% new matri x given by
mat r (mat r <3) =0

%nmultiply each entry greater than 4 with 10

matr(nmatr>4) = 4*matr (nmatr>4)

matr =

matr =

0 0 3 4 20 24

In order to check more than one condition, MATLAB also includes operators to combine logical matrices.

% create two random | ogi cal s
 ogl (rand(3)>0.5)
| 0g2 (rand(3)>0.5)

% el enentwi se AND: both | ogicals have to be 1
AND = (logl & | 0g2)

% el enentwi se OR. at | east one of both logicals has to be 1
OR = (logl | lo0g2)

% NONE: el ementwi se AND inverted with tilde command
NONE = ~AND

l ogl

Working with financial data: re-
gression analysis and curve fitting

1 0 1
| 0g2 =

1 0 0

1 1 1

1 0 0
AND =

0 0 0

0 0 1

1 0 0
OR =

1 1 0

1 1 1

1 0 1
NONE =

1 1 1

1 1 0

0 1 1

Inorder to not | oseinformation about the position of entrieswithin amatrix, you can usethefind() function,
which returns the indices of thefirst k entries which fulfill a certain condition. However, note that indices
are given in single index notation.

mat r
greater20 = (matr>=20) % shows | ogical matrix: indices could be read
% of f manual |y
find(matr>=20) % automatically returns all indices with |ogical
% val ue one
find(matr>=20, 1) %returns only first index with |ogical value one

matr =

0 0 3 4 20 24
greater20 =

0 0 0 0 1 1
ans =

Working with financial data: re-
gression analysis and curve fitting

Returning to the original intention to highlight the maximum price value, this gives

% find i ndex of maxi num price
ind = find(dax. prices == max(dax. prices), 1);

% find associ ated serial date
maxDat e = dax. dat es(ind);

% include in subplot(1, 2, 2)
subplot (1, 2, 2)

hol d on; % allows to add el ements, wi thout deleting previous
% gr aphi c

pl ot (naxDat e, max(dax.prices), '.r', 'MarkerSize', 18)

shg % show current graphic: pops up figure wi ndow again

hol d of f; % next graphic will not be included again

historic DAX values

9000 T T T T T 5000

8000 8000

7000 7000
6000 E000

5000 5000

prices

4000 - 4000

3000 3000

2000 2000

1000 1 1 L 1 L 1000 1 L 1 n
1} 1000 2000 3000 4000 5000 6000 1885 2000 2005 200

dates

Despite of going this quite cumbersome programmatic way, MATLAB also allows interactive request in
figures. This way, press the "Data Cursor" button in the figures toolbar, select the global maximum on
your own by clicking on it, then right click on datatip, and "Export Cursor Datato Workspace". Set name
to maxPrice. This exports information about the maximum stock price into a structure called maxPrice.

Instead of absolute prices, investorsusually are moreinterested in returns of the dax, where absolute gains/
losses are put in relation to the capital invested. Since each return needs one starting value and one ending
value, the length of the time series will decrease by one. Hence, also the date vector has to be adapted.

%transformprices to discrete percentage returns
dax. di sRet = 100*(dax. prices(2:end) - dax.prices(l:end-1))./...
dax. prices(1:end-1);

Working with financial data: re-
gression analysis and curve fitting

% date vector for returns
dax. ret Dates = dax. dates(2:end);

% conpare prices and returns in figure
cl ose % cl oses previously used figure w ndow

% pl ot prices

ax(1) = subplot(2, 1, 1); %storage of axes handle at ax(1l) allows
% accessing it |later

pl ot (dax. ret Dat es, dax.prices(2:end))

datetick 'x'

set(gca, 'xLim,[dax.retDates(1l) dax.retDates(end)])

title(' historic DAX prices')

x| abel (' dates')

yl abel (" prices")

% plot returns

ax(2) = subplot(2, 1, 2);

pl ot (dax. ret Dat es, dax. di sRet)

datetick 'x'

set(gca, 'xLim,[dax.retDates(1l) dax.retDates(end)])
title(' historic DAX returns')

x| abel (' dates')

yl abel (" returns')

% connect axes of both graphs: zooming in applies to both plots
i nkaxes([ax(1) ax(2)], "x")

Working with financial data: re-
gression analysis and curve fitting

historic DAX prices
10000 T . T T

a000 - .

prices

1 1 1 1
1995 2000 2005 2010
dates

historic D&Y returns
2':' T T T T

10F

returns

-0 1 1 1 1
19595 2000 2005 2010

dates

As can be seen, the return series exhibits phases of different volatilities. While most of the time rather
small returns occur, there are aso times were both positive and negative returns are persistently larger.
This observation is usually refered to as volatility clusters, and is understood as a stylized fact about stock
market data. However, when focussing on longer investment horizons, we usually neglect the information
about the exact times of occurrence of each return, and take alook at the distribution of returns only. This
is done with a histogram.

cl ose % cl oses previously used w ndow
hi st (dax. di sRet, 30) % sanpl e size justifies 30 bins

10

Working with financial data: re-
gression analysis and curve fitting

1600

1400

1200

1000

800

k00

400

200

In this figure, we want to include a line indicating the mean return over the observed period, as well as
two lines indicating regions with more than two standard deviations away from the mean.

% cal cul ate nean return
nmeanRet = sum{dax. di sRet)/ nunel (dax. di sRet);

% cal cul ate standard devi ation
st dDev sun((dax. di sRet - neanRet) . ~2)/ (nunel (dax. di sRet)-1);
st dDev sqrt(stdDev);

% check results with existing MATLAB functions
devi ations = [(neanRet - nean(dax.disRet))...
(stdDev-sqrt(var(dax.disRet)))]

% i nclude in graphic

yLimts = get(gca, 'yLim);

line(neanRet*[1 1], yLimts, "Color', 'r")

i ne((nmeanRet +2*stdDev)*[1 1], yLimts, "Color', 'r')

i ne((nmeanRet-2*stdDev)*[1 1], yLimts, "Color', 'r')

t ext (meanRet +2*stdDev, yLimts(end)/2, '2 standard deviations')

devi ati ons =

0 0

11

Working with financial data: re-
gression analysis and curve fitting

1600 T

1400

1200

1000

aoa I standard deviations -
GO0
400

200

Regression analysis

One of the most important models also in econometrics is the linear model. Hence, the following lines
show the implementation and estimation of alinear regression model in MATLAB. First, we sample from
a specified linear model.

%init parans

nSi m = 1000; % sanpl e size
mX = 12; % par ams expl anatory vari abl e
sigmaX = 2. 3;

; % regressi on coefficient

coeff = 0.

8
i nt cept 4.3; %regression intercept

% si mul ate expl anatory vari abl e
xMatr = nornrnd(muX, sigmX, nSim 1);

% simul ate standard normal |y distributed i nnovati ons
epsilon = randn(nSim 1);

% cal cul ate Y according to linear nodel
yMatr = intcept + coeff*xMatr + epsilon; % do not use for |oop

Now we want to estimate the parameters of the model based on the values simulated.

% because of intercept, expand matri x of explanatory variabl es
xMatr = [ones(nSim 1) xMatr];

12

Working with financial data: re-
gression analysis and curve fitting

% OLS estimtion, naive way
paranmsHat = inv(xMatr'*xMatr)*xMatr' *yMatr;
% usual estimation fornmula

% avoi ding single matrix inversion as nmlint warning suggests
paranmsHat 2 = (xMatr' *xMatr)\ (xMatr' *yMatr); % faster way
paranmsHat 3 = xMatr\yMatr; % best way

% cal cul ate regression line
xLimts = [floor(m n(xMatr(:, 2))) ceil (max(xMatr(:, 2)))];
% use near est
% nei ghbouri ng i nteger nunbers
grid = xLimts(1):0.1:xLimts(2);
val s = paransHat (1) +paransHat (2) *gri d;

% plotting data

cl ose

scatter(xMatr(:, 2), yMatr, "."); % used for visualizing points
% cl oud

% i nclude regression line

hol d on; % plot in same figure

plot(grid, vals, 'LinewWdth', 2, "Color', "r") %l arger line width
set(gca, 'xLim, xLimts)

x|l abel (' regressor variable')

yl abel (' dependent vari able')

title(['Linear nodel: estinmated beta is ' nunRstr(paranmsHat(2))])

13

Working with financial data: re-
gression analysis and curve fitting

Linear model: estimated beta is 0.81075

22

dependent v ariable

| | | | 1 |
4) 5] 10 12 14 16 18 20
regressar variable

Because of the risk-aversion of investors, theoretical models often conclude that riskier assets should in
general coincide with higher expected returns, since investors demand higher compensation for the risk
involved. Asafirst application of thelinear model, we want to investigate whether this positive relationship
can be verified for German stock data. Therefore, wewill download historical dataof all 30 components of
the German stock market index DAX, estimate their mean return and return standard deviation, and regress
the mean returns on the standard deviations. Note that standard deviation is only one way to measure
inherent risk, and one common criticism is that the symmetrical nature of standard deviation measures
positive deviations the same way as negative ones.

% specify start and end point of investigation period
dateBeg = ' 01011990";
dateEnd = ' 01072011";

% downl oad data of all conponents: dax_conp is structure array
daxConp = hist_stock_dat a(dat eBeg, dateEnd, 'ADS.DE , 'ALV.DE,...
"BAS.DE', 'BAYN.DE', 'BEI.DE', 'BMWDE, 'CBK DE, 'DAI.DE,

"DBl.DE', ...
"DBK.DE', 'DPWDE', 'DTE.DE', 'EOAN.DE', 'FME.DE', 'FRE.DE',...
"HElI .DE', '"HEN3.DE', "IFX. DE', 'LHA.DE', 'LIN. DE, 'MAN DE',...

"MEO DE', 'MRK.DE', 'MWN2.DE', 'RWE.DE', 'SAP', 'SDF.DE,...
"SIE.DE', 'TKA.DE', 'VOWB.DE');

When downloading data of so many different stocks at Y ahoo!finance, we usually will observe different
sample sizes of the individual time series. This also has to be taken into account when stocks of different
countries are involved, since deviating holidays will lead to different sample sizes. Let's first investigate
the sample sizes.

14

Working with financial data: re-
gression analysis and curve fitting

% preal | ocate storage variables for first dates and sanpl es sizes
firstDates = zeros(size(daxComp));
sampl eSi zes = zeros(si ze(daxConp));

% extract first date and sanple size of each conponent
for ii=1:nunel (firstDates)
firstDates(ii) = datenum daxConp(ii).Date(end));
sampl eSi zes(ii) = numel (daxConp(ii).Date);
end

% di splay first dates as strings to command w ndow
fprintf('\nThe respective first observations are given by:\n')

for ii=4:4:nunmel (daxConp)
% di spl ay four dates per row
fprintf([datestr(firstDates(ii-3), 'dd-mmyyyy')
datestr(firstDates(ii-2), 'dd-nmmyyyy')
datestr(firstDates(ii-1), 'dd-mmyyyy') ",
datestr(firstDates(ii), 'dd-mmyyyy') "\n'])
end

% if nunel (daxConp) is not divisible by 4

remai ni ng = nmod(nunel (daxConp), 4);

nMul ti pl esOf Four = (nurnel (daxConp) - remaining) / 4;
nAl r eadyShown = nMil ti pl esOf Four * 4;

for ii=1:remaining
if(ii==1)
str = datestr(firstDates(ii + nAlreadyShown), 'dd-mmyyyy');
el se
str = [str ', ' datestr(firstDates(ii + nAlreadyShown), ...
“dd- mmyyyy')];
end
end

fprintf(str)

% get ticker synmbol of conmponent with mninmum sanple size
t Sym = daxConp(fi nd(sanpl eSi zes == m n(sanpl eSi zes))). Ti cker;

% di splay with sanmpl e sizes
fprintf(['\nThe m ni mum sanpl e size occurs for ' tSym...
".\nThere are only %i observations.\n'], mn(sanpleSizes))

The respective first observations are given by:

03- Jan- 2000, 03-Jan-2000, 03-Jan-2000, 03-Jan-2000
03- Jan- 2000, 03-Jan-2000, 03-Jan-2000, 03-Jan-2000
05- Feb- 2001, 03-Jan-2000, 20- Nov-2000, 03-Jan-2000
03- Jan- 2000, 03-Jan-2000, 03-Jan-2000, 03-Jan-2000
01- Jan- 2003, 14- Mar-2000, 03-Jan-2000, 03-Jan-2000
03- Jan- 2000, 03-Jan-2000, 03-Jan-2000, 03-Jan-2000
28- Nov- 2000, 03-Aug-1998, 03-Jan-2000, 03-Jan-2000
03- Jan- 2000, 28-Dec- 2007

The m ni mum sanpl e size occurs for VOMB. DE

There are only 656 observati ons.

15

Working with financial data: re-
gression analysis and curve fitting

Thisindex refersto VOW3.DE, standing for Volkswagen. Since all other sample sizes are large enough,
we simply exclude Volkswagen from the analysis.

% del et e Vol kswagen from data

i ndexOF M ni munSanpl eSi ze = find(sanpl eSi zes == m n(sanpl eSi zes)) ;

daxConmp(i ndexOf M ni munanpl eSi ze) = [];

firstDates(indexOFM ni munSanpl eSi ze) = [];

sanpl eSi zes(i ndexOf M ni munanpl eSi ze) = [];

% get new m ni num

fprintf(['\nThe new m ni numnow i s %i, which seens to be\n'...
"sufficient for reasonable analysis.\n'], mn(sanpleSizes))

The new m ni mum now i s 2199, which seens to be
sufficient for reasonabl e anal ysis.

Exercise:

Since the availability of data for individual DAX components changes from time to time, it is not guar-
anteed, that there will always be only one company with insufficient data. A better way hence would be
defining acertain minimal sample size asthreshold. Then, all companieswith less data should be removed
automatically.

In order to eliminate data points with missing values and to adjust the data to the usual convention with
chronologically increasing points in time, we make use of the function processData(). Also, string dates
are converted to serial dates, and the already used data of the German stock index isincluded.
tic
[daxDat es daxPrices] = processbDat a([daxConp daxCrude]);
toc

El apsed tine is 1.045273 seconds.

The following two queries give an impression about the nature of the output of the function.

% bot h output are nuneric variabl es
nunericVars = [isnumeric(daxDates) isnuneric(daxPrices)]

% get di mensi ons
si ze(daxDat es)
si ze(daxPri ces)

nunericvVars =

2095 1

16

Working with financial data: re-
gression analysis and curve fitting

ans =

2095 30

Hence the data consist of about 2000 observations of 30 different stocks (29 DAX components and the
DAX itself), and daxDates is the vector of respective dates in serial dates format. This information will
be stored more meaningful and robust in a structure called daxStocks, together with respective returns,
return dates and ticker symbols.

% assign existing data to daxStocks fields
daxSt ocks. dat es = daxDat es;
daxSt ocks. prices = daxPrices;

%transformto percentage discrete returns
daxSt ocks. di sRet = 100*di ff (daxPrices)./daxPrices(1:end-1,:);

% diff() calculates differences between successive nmatrix entries
c = rand(2)
differences = diff(c)

% get ticker synbols
daxSt ocks.ticker = {daxConp. Ti cker daxCrude. Ti cker};

0. 9262 0. 3408
0.1169 0. 0367

di fferences =

-0. 8093 -0. 3041

Now that historical returns are given suitable form, we can easily estimate expected returns and standard
deviations. Note that most statistical functions act columnwise. Hence it is always preferable to store
observations of a given variable in a column vector, and use different columns for different variables.

% estimate returns and sigmas of DAX conponents
expRets = nmean(daxStocks. di sRet);
sigmaHats = sqrt(var (daxSt ocks. di sRet));

% show in figure, standard deviations on x-axis
cl ose % cl ose last figure
scatter(sigmHats, expRets, '.")

% hi ghli ght DAX itself
hol d on;
scatter (sigmHats(end), expRets(end), 30,[1 0 0], 'filled")

% estimate regression line
bet aHat = [ones(nunel (sigmaHats), 1) sigmaHats']\expRets';

17

Working with financial data: re-
gression analysis and curve fitting

% cal cul ate regression line
xLimts = get(gca, 'XLim);
grid = linspace(xLimts(1), xLimts(end), 200); % di vi de
% specified interval in 200
% parts of equal size
yVal s = [ones(nunel (grid), 1) grid']*betaHat;

% include regression line in red
plot(grid, yvals, 'r')

% get R*2 from existing MATLAB function
stats = regstats(expRets, sigmaHats',...
"linear', 'rsquare');
title([' R-square of regression: nunstr(stats.rsquare)])
x|l abel (" esti mated standard devi ations')
yl abel (' estinmated nmean returns')

R-square of regression: 0.68369

0.35

0.3

T
*

0.25

0.2

0.15

estimated mean returns

0.1

0.05

0 1 L * 1 1 1 |
1 2 3 4 5 B 7

estimated standard deviations

Although theregression lineexhibitsanincreasing slope astheory suggests, the R-squared of theregression
israther small. Evidence for a positive relation between return and risk is rather weak.

CAPM

The capital asset pricing model tries to explain asset pricies. It is set up on the assumption, that investors
only get compensated for that part of an asset'srisk that can not get diversified away in aportfolio. Shortly
speaking, each assets partly exhibits comovements with the market, called systematic risk. Since this risk

18

Working with financial data: re-
gression analysis and curve fitting

component underlies each asset, it can not be diversified away. Hence, investors need to be compensated
for it. In contrast to that, the remaining risk inherent in an asset is called the idiosyncratic risk. This com-
ponent is stock specific, and hence not correlated with idiosyncratic components of other firms. Hence, in
alarge portfolio of assets, this component could be diversified away.

In order to measure each assets comovement with the market, we perform alinear regression of the daily
returnson daily returns of amarket index. Notethat the theory isbased on dependenceto amarket portfolio,
where our market index hereis only an imperfect substitution.

% preal | ocate vector for estimted betas
betas = zeros(1, 29);

for ii=1:29
betas(ii) = regress(daxStocks.disRet(:, end),...
daxStocks.disRet (:, ii)); % no intercept invol ved
end

% pl ot betas with expected returns
cl ose
scatter(betas, expRets(1l:end-1), ".")

% estimate regression coefficients with intercept
bet aHat = [ones(nunel (betas), 1) betas']\expRets(l:end-1)";

% i nclude regression line

xLimts = get(gca, 'XLim);

grid = linspace(xLimts(1), xLimts(end), 200);
yVal s = [ones(nunel (grid), 1) grid']*betaHat;

hol d on;

plot(grid, yvals, 'r')

x|l abel (" estimated beta coefficients')
yl abel (' estinmated nean returns')
title(' CAPM di sproved?')

19

Working with financial data: re-
gression analysis and curve fitting

CAPM disproved?
0.3

1
*

0.25

0.2

0.15

0.1

estimated mean returns

0.05

| |
0.1 0.z 0.3 0.4 0.4 0.6 0.7

-0.05 ' '
a

estimated beta coefficients

Notethat thisanalysisisonly avery rough investigation of the validity of the CAPM, with many sources of
error involved (only substitute for market portfolio, applied to returnsinstead of excessreturns,...). Infact,
the purpose merely was to come up with some easy example of regression analysis in finance. So do not
make the mistake to interpret the investigations as scientifically rigurous and adequate approach. As part
of amore thorough investigation at least also returns of larger time horizons would have to be examined.

Stock price prediction based on curve fitting

While the previous part was concerned with looking for an explanatory variable for stock returns, we now
will try to find regularitiesin stock prices that allow to make predictions on future price movements. That
is, in course of its evolution, any stock price seems to follow some trend at some point of time. Looking
at charts of stock prices one usually might be tempted to assume that such trends could be identified in
real-time, thereby allowing for speculative trading opportunities. The idea in this chapter isto fit certain
functions to historic stock price paths. Given that the function seems to be a good approximation to past
prices, chance might bethat it will still be an approximation in thefuture, so that our function could be used
asstock price predictor. However, the approach taken hereisdlightly different. Based on curvefitting tools,
positive trendsin stock prices shall beidentified. But instead of trying to exactly predict future prices, we
only try to identify pointsin time where the current dynamic changes. That is, we only try to predict break-
offs of rising stock prices, without bothering with the exact type of regime evolving after the break-off.

Given that returns fluctuate around a constant positive value, prices should exhibit exponential growth.
Such growth rates best can be seen on logarithmic scale, since they correspond to a straight line here.
Hence, we first extend the data structure with an additional field logPrices. Visualization shows that DAX
prices tend to exhibit super-exponential growth during certain periods.

% get log prices

20

Working with financial data: re-
gression analysis and curve fitting

dax. | ogPri ces = | og(dax. prices);

% speci fy subperiod as strings
begT = ' 01-Jun-1993";
endT = ' 29-Jul -1998";

% find indices associated with considered period
i ndS = find(dax.dates > datenun(begT, 'dd-nmmmyyyy'), 1);
i ndE = find(dax.dates > datenunm(endT, 'dd-nmmmyyyy'), 1);

Note: it is not possible to access the prices with indexing based on the dates of the time series. Hence,
dates always have to be converted to chronological indices first. However, the finance toolbox of MAT-
LAB also includes financial time series objects (fints) that can be indexed by date strings. For example,
myfts({'05/11/99', '05/21/99', '05/31/99'}) extractsthe values of thefints object myfts at the specified dates.

% create figure w ndow
cl ose
figure('Position', [50 50 1200 600])

% pl ot DAX prices with subperiod highlighted

ax(1) = subplot(2, 1, 1);

pl ot (dax. dates, dax.prices, "Color', [1 0.8 0.8]);
hol d on;

pl ot (dax. dat es(i ndS:i ndE), dax. prices(indS:indE));
datetick 'x'

title('linear scale')

% plot | og DAX prices with subperiod highlighted

ax(2) = subplot(2, 1, 2);

pl ot (dax. dates, dax.logPrices, "Color', [1 0.8 0.8]);

hol d on;

pl ot (dax. dat es(i ndS:i ndE), dax.!|ogPrices(indS:indE)); shg
datetick 'x'

title('logarithmc scale')

% connect axes of both graphs: zooming in applies to both plots
i nkaxes([ax(1) ax(2)], "x');

21

Working with financial data: re-
gression analysis and curve fitting

linear scale
10000 T T T T

5000 —

5000 —
4000 - —
2000 —

il | 1 1 | 1 | | | |
1990 1892 1994 1998 1998 2000 2002 2004 2006 2008 2010 m2 2014

logarithmic scale
95 T T T T

7 1 1 | 1 | | | |
1950 1992 1994 1996 1885 2000 2002 2004 2006 2008 2010 amz 2014

Although it would be easier to fit a straight line to log prices we want to estimate to best fitting expo-
nential growth for normal prices using an optimization. Hence, the exponentially growing function f(x)=
a 1*exp(a_2*x) shall befitted to the stock prices. Therefore, parametersa 1 and a_2 will be chosen such
that the mean squared error between the exponential function and the historic price chart is minimized.

% create new grid for subperiod, starting at 1

daysSi nceBeg = 1:nunel (dax. dat es(i ndS:indE)); % st ock market
% prices are treated as equidistant, with no distinction
% between Friday / Monday or Monday / Tuesday

% defi ne exponential function as anonynous function
expFun = @x, parans) parans(1)*exp(x.*parans(2));

% eval uati ng exponential function simlar to normal functions

fprintf(['Calling the anonynous function according to '...
"usual syntax\nexpFun(3,[0.5 0.5])\nreturns the value'...
" od.2f.\n"], expFun(3,[0.5 0.5]))

Cal I'i ng the anonynous function according to usual syntax
expFun(3,[0.5 0.5])
returns the value 2.24.

% defi ne nmean squared error function as anonynous function
errFun = @parans, X, prices)...
sum((prices(:) - expFun(x(:), params)).”2); %for any price
% series given by prices and associ ated x val ues the
% error function conmputes the nean squared error between
% exponential function with paranmeters parans and the
% price series

%init guess for optimzation
paranms0 = [dax. prices(indS)
| og(dax. prices(indE) - dax.prices(indS))/...
(dax. dates(indE) - dax.dates(indS))];
% params(2) chosen so that it fulfills the equation:
% exp((daysSi nceBeg(end)-daysSi nceBeg(1))*a_2)

22

Working with financial data: re-
gression analysis and curve fitting

% = prices(end)-prices(1)

% specify options for optim zation
opt = optinmset('display', "off', 'Tol X, l1le-18, 'Tol Fun', 1e-8);

% optim zation
[best Parans expMSE] = fm nsearch(errFun, parans0, opt,...
daysSi nceBeg, dax.prices(indS:indE));

Note: since the objective function, which shall be minimized, also depends on the grid values of x and
the given price vector prices, these data has to be given as fixed input into the optimization, since the
optimization shall only be applied to the parameter values. Therefore, the parameters of interest have to
appear in the objective function as one vector and as first input. Additional inputs are included in the
optimization routine fminsearch as additional inputs at last positions. However, this syntax isonly allowed
when the objective functionisgiven asfunction handleto an anonymousfunction. An example of asimiliar
optimization task involving an already existing MATLAB function will be given further below.

% cal cul at e associ ated exponential function val ues
expVal s = expFun(daysSi nceBeg, best Parans);

% include in given figure

subplot (2, 1, 1);

pl ot (dax. dat es(i ndS+daysSi nceBeg), expVals, 'r'); % Note:
% dax. dat es(i ndS) + daysSi nceBeg does not work, since
% dax. dates is not numbered consecutively. dax.dates
% refers to business days, not consecutive days!

x| abel (' dates')

yl abel (" prices")

subplot (2, 1, 2);

pl ot (dax. dat es(i ndS+daysSi nceBeg), |og(expVals), 'r'); shg
x| abel (' dates')

yl abel (" prices")

% cal cul ate nmean squared error on logarithm c scale
MSE = sun((dax. | ogPrices(i ndS+daysSi nceBeg) -1 og(expVal s(:)))."2);

% di spl ay nmean squared error
fprintf(['\nThe nmean squared error between the exponential fit'...
" and\nthe stock price path is 93.4f.\n"], MSE);

The nmean squared error between the exponential fit and
the stock price path is 32.2208.

23

Working with financial data: re-
gression analysis and curve fitting

linear scale
1oooa T T T T T T

5000 —

5000 —
4000 - —
2000 —

il 1 | | 1 | 1 1 1 |
1980 1992 1994 1996 1993 2000 2002 2004 2006 2008 2010 2012 2014
dates

prices

logarithmic scale
95 T T T T T T

prices

P | | | | | |
1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 012 2014
dates

With the straight line as benchmark, one can see that the stock price path exhibits a convex curvature
during the subperiod. This pattern indicates super-exponential growth rates. Such growth rates usually are
associated with stock market bubbles. Our intention now will beto identify evolving stock market bubbles,
and try to predict thetimethey burst. According to Didier Sornette and hiscolleagues, stock market bubbles
can be approximated with super-exponentially growing log-periodic power law (LPPL) functions. These
are super-exponentially growing functions with finite-time singularities and oscillating behaviour, given
by theformula: f(x) =a 1+a 2*(a_3-x)(a_4)* (1+a 5*cos(a 6*log(a _3-a 8*x)+a 7). Inorder to get an
impression about the appropriateness of aL PPL function, we will fit it the subperiod and compareits mean
squared error to the error of asimple exponential fucntion. Furthermore, we will examine whether the date
of the estimated finite-time singularity could be used as indicator of a forthcoming change in regimes.

%fit LPPL nodel to subperiod
params = | ppl Fit(dax.logPrices(indS:indE));

% cal cul at e approxi mati on val ues to stock prices
[val s derivs] = | ppl Func(parans);

% create associated grid

grid = dax.dates((1l: (parans(3)/parans(8)-1))+indS);
% Note: parans(3)/parans(8) denotes the time in business days
% from begi nni ng of subperiod until finite-tinme singularity.

% include in given figure
subplot (2, 1, 2);
plot(grid, vals,

"g"); shg

%include line for finite tinme singularity

yLinmts = get(gca, 'yLim);

I i ne(dax. dates(fl oor(parans(3)/parans(8)+indS))*[1 1], yLimts,...
"Color', 'k')

% cal cul ate nmean squared error on logarithm c scale
MSE_LPPL = sun{((dax. | ogPrices(i ndS+daysSi nceBeg)-...
(val s(daysSi nceBeg)'))."2);

24

Working with financial data: re-
gression analysis and curve fitting

fprintf(['"\nln contrast to the MSE of ' nun®str (MSE)
obt ai ned before,\n we now get a MSE of only '
nunstr(MSE_LPPL) '.\n'])

In contrast to the MSE of 32.2208 obtai ned before,
we now get a MSE of only 3.855.

linear scale
o000 T T T \ T T

8000 — —

5000 - —
4000 =
2000 —

il | 1 1 | 1 | | | 1 | 1
1990 1992 1994 1998 1998 2000 2002 2004 2006 2008 200 2mz2 2014
dates

prices

logarithmic scale
2 T T T T T T

prices

7 | 1 1 | 1 | | | 1 |
1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
dates

When looking at the figure, we can see that the fitted LPPL model at the time of the end of the subperiod
could indicates an impending regime change, since the critical point given by the finite-time singularity
lies only days ahead.

In order to examine the validity of the LPPL model on further stock market indices, you can uncomment
the following lines of code and interactively conduct experiments on historic data. As examples of further
accurate subperiod fitting, take a look at Hang Seng index from 15-Dec-2004 to 21-Nov-2007, which
leads to an estimated regime change 52 business days ahead, or the German stock market index from 15-
Oct-1992 to 29-Jul-1998.

% % I nteracti ve exan nati on of further stock market indices.
%

% % i ckerSyms = cell (8, 1);

% tickerSyms = {' "GDAXI';'ASMSI';'ASSM " ;...

% "AOMXSPI' ;P ANDX' ;' ADJI' ;" AHSE ;T ASSEC }

%

% i ndexNanes = {' DAX'; 'Madrid General"';...

% '"Swiss Market'; ' Stockholm General'; ' NASDAQ ;

% '"Dow Jones |ndustrial'; 'Hang Seng';...

% ' Shanghai Conposite'};

%

% for ii=1:nunel (tickerSyns)

% fprintf(['\nlndex investigated: ' indexNanes{ii} '\n'])
% data = hist_stock_data(begT, endT, tickerSyns{ii}l);
% [data_dates data_prices] = processData(data);

% LPPLi nteractivel y(data_prices, data_dates)

% title(indexNames{ii})

% hol d of f

25

Working with financial data: re-
gression analysis and curve fitting

% end

Published with MATLAB® 7.14

26

	Table of Contents
	
	Required functions
	Load historic DAX prices
	Plotting financial data
	Logical indexing
	Regression analysis
	CAPM
	Stock price prediction based on curve fitting

