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This is the second part of the MATLAB course. Here we will show how to download real data and how
this data can be further processed.

Then, as first application, we will examine whether some theoretical relationships between risk and return
can be found in german stock data. This analysis will be based on regression models.

Subsequently, we will try to find deterministic trends in stock market data based on curve fitting approach-
es. Only the next script will show common approaches to modelling of stock market returns as stochastic
variables.

Required functions
hist_stock_data
processData
LPPL
LPPLfit
constrFunc
LPPLinteractively

Load historic DAX prices
The following code provides an example of the usage of the function hist_stock_data, which is able to
download historic stock prices and trading volumes based on the data provided by Yahoo!finance. In order
to make the data comply with our requirements, some additional treatments are needed first.

% specify ticker symbol as string variable
tickSym = '^GDAXI';     % specify stock data of interest

% specify beginning and ending as string variables
dateBeg = '01011990';   %  day, month, year: ddmmyyyy
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dateEnd = '01072013';

Alternatively, dates also can be determined dynamically, with regard to today. Since the MATLAB com-
mand "today" measures time on a numeric scale, the value displayed is a number.

% display date of today
fprintf(['\nToday is ' num2str(today) '.\n'])
    % Note: fprintf is able to display a string to the command
    % window, without having to assign it to a variable or MATLAB's
    % temporary placeholder "ans" (short for "answer") first. In
    % order to get the input string, in this case we first have to
    % concatenate smaller strings into one large string.

Today is 735469.

In order to make the numeric data value more meaningful, we can transform it with the function datestr()
into a date expression. As a string, this can be directly assigned to the variable declaring the end of the
data period requested.

% dynamic assignment to end of period
dateEnd = datestr(today, 'ddmmyyyy')  % today as last date

dateEnd =

23082013

However, instead of using "today", you also can use the command "date", which returns the date as string
right away.

fprintf(['\nToday is ' date '.\n'])

Today is 23-Aug-2013.

In order to download data from Yahoo!finance, we make use of the function hist_stock_data. This function
can be found at the MATLAB File Exchange at http://www.mathworks.com/matlabcentral/fileexchange/.
The File Exchange is a place where users can find and share content related to MATLAB development.

% load data
daxCrude = hist_stock_data(dateBeg, dateEnd, tickSym);

The function hist_stock_data returns a structure variable. A more detailed insight into the formatting of
the output can be achieved with queries.

daxCrude
exampleDateEntries = daxCrude.Date(1:4)

daxCrude = 

      Ticker: '^GDAXI'
        Date: {5760x1 cell}
        Open: [5760x1 double]
        High: [5760x1 double]
         Low: [5760x1 double]

http://www.mathworks.com/matlabcentral/fileexchange/
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       Close: [5760x1 double]
      Volume: [5760x1 double]
    AdjClose: [5760x1 double]

exampleDateEntries = 

    '2013-08-22'
    '2013-08-21'
    '2013-08-20'
    '2013-08-19'

As the second query shows, historic prices are ordered with latest observations first. This configuration
is disadvantageous for further work, since plotting of the prices would show the latest observations to
the left. Moreover, instead of storing the dates as a cell array of string variables, we will achieve more
flexibility if we store dates as serial dates, which is the same conversion we already encountered with the
today command. In this numeric scale, each date is assigned to a uniquely specified number. As anchor
point of this system, January 1st, 0000, is assigned to the value one.

fprintf(['Number 1 is equal to the date ' datestr(1) '.\n'])

Number 1 is equal to the date 01-Jan-0000.

In order to switch between dates given as strings and numeric serial dates the functions datestr and datenum
can be used. Now we want to convert the date strings to serial dates.

serialDates = datenum(daxCrude.Date, 'yyyy-mm-dd');
% second argument specifies input format of string dates

In accordance with common convention prices and dates shall be arranged in increasing order, with most
recent data at the end. Instead of manually encoding a for-loop, the MATLAB function flipud can be used
to flip both matrices upside down. The results will be assigned to fields of a new structure variable called
dax.

% flip most recent entries to the end
dax.dates = flipud(serialDates);    % initializes structure dax
dax.prices = flipud(daxCrude.Close);

Plotting financial data
When plotting financial data, we usually want the x-axis to be denoted in dates instead of numeric values.
This can be done with help of the command "datetick", which interprets values of the respective axis as
serial dates, and converts the labels of the individual ticks into meaningful date strings.

Further adjustments to graphical representations can be achieved by manual configuration of figure sizes,
as well as additional graphics in one figure window. Both concepts are applied in the following illustration.

figure('position',[50 50 1200 600]) % create gray window, left
                                    % corner at latitude 50,
                                    % height 50, with width 1200
                                    % and height 600

subplot(1, 2, 1);     % Include two different white windows within
                    % the gray figure window. 1,2 denotes
                    % arrangement (one row, two columns of white
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                    % windows), while the last number (1) denotes
                    % the currently used window.

% use plot command without further adjustments
plot(dax.prices) % since no x-values are specified, MATLAB
                % automatically numbers observations from 1 to
                % numel(dax.dates).

subplot(1, 2, 2);
plot(dax.dates, dax.prices)
datetick 'x'    % exact format of date labels can be chosen with
                % additional input, e.g. try datetick('x', 29) and
                % datetick('x', 10)
xlabel('dates')
ylabel('prices')
title('historic DAX values')

% crop x-axis to relevant size only
set(gca, 'xLim',[dax.dates(1) dax.dates(end)])

As can be seen at the command line used to crop the x-axis, though MATLAB renders the x-axis labels
to date strings, it still needs references denoted in numeric values. That is, it is not possible to directly
tell MATLAB to restrict the axis to 01.01.2000 to 31.12.2002 for example. Indexing with date strings is
generally not possible. Hence, simple graphical modifications may become quite cumbersome. As first
example, the maximum value during the period shall be highlighted with a red point. The general way
to do this will be to first find the entry with the highest point in the price vector, which will be given as
index value relative to the price matrix. Then, the index has to be converted into the respective index of
the serial dates vector. In most cases, lengths of price and serial dates vectors will coincide, so that nothing
needs to be done in this step. At last, this index is used to get the value of the serial dates vector at the
respective entry.

Logical indexing
In order to find certain specified values in a given matrix, MATLAB usually makes use of the concept
of logical indexing. In logical notation, a value of zero represents "no", while a value of "1" has to be
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interpreted as "yes". Hence, for example, when checking whether the entries of a matrix fulfill a given
condition, MATLAB checks the condition on each entry, and returns a logical matrix of same size filled
with zeros and ones.

% init matrix
matr = [1 2 3 4 5 6]

% check if entries are greater than 3
greaterThan3 = matr>3

% matrix greaterThan3 is logical variable
logicalCheck = islogical(greaterThan3)

matr =

     1     2     3     4     5     6

greaterThan3 =

     0     0     0     1     1     1

logicalCheck =

     1

Such logical matrices created from logical or relational operations can be used to extract values of a given
matrix. However, these extracted values are always returned arranged in vectors, so that information about
the position in the original matrix is lost.

% get values greater than 3
valuesGreater3 = matr(greaterThan3)

valuesGreater3 =

     4     5     6

In order to compare numerical values, MATLAB uses relational operators.

% equal to
equalThree = (matr == 3)   % since single equal signs are already
                        % used for assignments, MATLAB notation
                        % requires two equality signs to check
                        % for equality

% less or equal
lessEqualThree = (matr <= 3)   % greater or equal: >=

% not equal to
notEqualThree = (matr ~= 3)
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equalThree =

     0     0     1     0     0     0

lessEqualThree =

     1     1     1     0     0     0

notEqualThree =

     1     1     0     1     1     1

Matrix manipulation also can be done based on logical indexing. For example, set each value of matr
below three to zero.

% new matrix given by
matr(matr<3)=0

% multiply each entry greater than 4 with 10
matr(matr>4) = 4*matr(matr>4)

matr =

     0     0     3     4     5     6

matr =

     0     0     3     4    20    24

In order to check more than one condition, MATLAB also includes operators to combine logical matrices.

% create two random logicals
log1 = (rand(3)>0.5)
log2 = (rand(3)>0.5)

% elementwise AND: both logicals have to be 1
AND = (log1 & log2)

% elementwise OR: at least one of both logicals has to be 1
OR = (log1 | log2)

% NONE: elementwise AND inverted with tilde command
NONE = ~AND

log1 =

     0     1     0
     0     0     1
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     1     0     1

log2 =

     1     0     0
     1     1     1
     1     0     0

AND =

     0     0     0
     0     0     1
     1     0     0

OR =

     1     1     0
     1     1     1
     1     0     1

NONE =

     1     1     1
     1     1     0
     0     1     1

In order to not lose information about the position of entries within a matrix, you can use the find() function,
which returns the indices of the first k entries which fulfill a certain condition. However, note that indices
are given in single index notation.

matr
greater20 = (matr>=20) % shows logical matrix: indices could be read
                    % off manually
find(matr>=20)     % automatically returns all indices with logical
                % value one
find(matr>=20, 1)   % returns only first index with logical value one

matr =

     0     0     3     4    20    24

greater20 =

     0     0     0     0     1     1

ans =
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     5     6

ans =

     5

Returning to the original intention to highlight the maximum price value, this gives

% find index of maximum price
ind = find(dax.prices == max(dax.prices), 1);

% find associated serial date
maxDate = dax.dates(ind);

% include in subplot(1, 2, 2)
subplot(1, 2, 2)
hold on;    % allows to add elements, without deleting previous
            % graphic

plot(maxDate, max(dax.prices), '.r', 'MarkerSize', 18)
shg         % show current graphic: pops up figure window again
hold off;   % next graphic will not be included again

Despite of going this quite cumbersome programmatic way, MATLAB also allows interactive request in
figures. This way, press the "Data Cursor" button in the figures toolbar, select the global maximum on
your own by clicking on it, then right click on datatip, and "Export Cursor Data to Workspace". Set name
to maxPrice. This exports information about the maximum stock price into a structure called maxPrice.

Instead of absolute prices, investors usually are more interested in returns of the dax, where absolute gains /
losses are put in relation to the capital invested. Since each return needs one starting value and one ending
value, the length of the time series will decrease by one. Hence, also the date vector has to be adapted.

% transform prices to discrete percentage returns
dax.disRet = 100*(dax.prices(2:end) - dax.prices(1:end-1))./...
    dax.prices(1:end-1);
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% date vector for returns
dax.retDates = dax.dates(2:end);

% compare prices and returns in figure
close   % closes previously used figure window

% plot prices
ax(1) = subplot(2, 1, 1); % storage of axes handle at ax(1) allows
                        % accessing it later
plot(dax.retDates, dax.prices(2:end))
datetick 'x'
set(gca, 'xLim',[dax.retDates(1) dax.retDates(end)])
title('historic DAX prices')
xlabel('dates')
ylabel('prices')

% plot returns
ax(2) = subplot(2, 1, 2);
plot(dax.retDates, dax.disRet)
datetick 'x'
set(gca, 'xLim',[dax.retDates(1) dax.retDates(end)])
title('historic DAX returns')
xlabel('dates')
ylabel('returns')

% connect axes of both graphs: zooming in applies to both plots
linkaxes([ax(1) ax(2)], 'x')
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As can be seen, the return series exhibits phases of different volatilities. While most of the time rather
small returns occur, there are also times were both positive and negative returns are persistently larger.
This observation is usually refered to as volatility clusters, and is understood as a stylized fact about stock
market data. However, when focussing on longer investment horizons, we usually neglect the information
about the exact times of occurrence of each return, and take a look at the distribution of returns only. This
is done with a histogram.

close   % closes previously used window
hist(dax.disRet, 30)     % sample size justifies 30 bins
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In this figure, we want to include a line indicating the mean return over the observed period, as well as
two lines indicating regions with more than two standard deviations away from the mean.

% calculate mean return
meanRet = sum(dax.disRet)/numel(dax.disRet);

% calculate standard deviation
stdDev = sum((dax.disRet-meanRet).^2)/(numel(dax.disRet)-1);
stdDev = sqrt(stdDev);

% check results with existing MATLAB functions
deviations = [(meanRet - mean(dax.disRet))...
    (stdDev-sqrt(var(dax.disRet)))]

% include in graphic
yLimits = get(gca, 'yLim');
line(meanRet*[1 1], yLimits, 'Color', 'r')
line((meanRet+2*stdDev)*[1 1], yLimits, 'Color', 'r')
line((meanRet-2*stdDev)*[1 1], yLimits, 'Color', 'r')
text(meanRet+2*stdDev, yLimits(end)/2, '2 standard deviations')

deviations =

     0     0
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Regression analysis
One of the most important models also in econometrics is the linear model. Hence, the following lines
show the implementation and estimation of a linear regression model in MATLAB. First, we sample from
a specified linear model.

% init params
nSim = 1000;       % sample size
muX = 12;       % params explanatory variable
sigmaX = 2.3;
coeff = 0.8;    % regression coefficient
intcept = 4.3;  % regression intercept

% simulate explanatory variable
xMatr = normrnd(muX, sigmaX, nSim, 1);

% simulate standard normally distributed innovations
epsilon = randn(nSim, 1);

% calculate Y according to linear model
yMatr = intcept + coeff*xMatr + epsilon;    % do not use for loop

Now we want to estimate the parameters of the model based on the values simulated.

% because of intercept, expand matrix of explanatory variables
xMatr = [ones(nSim, 1) xMatr];
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% OLS estimation, naive way
paramsHat = inv(xMatr'*xMatr)*xMatr'*yMatr;
% usual estimation formula

% avoiding single matrix inversion as mlint warning suggests
paramsHat2 = (xMatr'*xMatr)\(xMatr'*yMatr);      % faster way
paramsHat3 = xMatr\yMatr;                % best way

% calculate regression line
xLimits = [floor(min(xMatr(:, 2))) ceil(max(xMatr(:, 2)))];
                                 % use nearest
                                 % neighbouring integer numbers
grid = xLimits(1):0.1:xLimits(2);
vals = paramsHat(1)+paramsHat(2)*grid;

% plotting data
close
scatter(xMatr(:, 2), yMatr, '.');   % used for visualizing points
                                    % cloud

% include regression line
hold on;    % plot in same figure
plot(grid, vals, 'LineWidth', 2, 'Color', 'r')   % larger line width
set(gca, 'xLim', xLimits)
xlabel('regressor variable')
ylabel('dependent variable')
title(['Linear model: estimated beta is ' num2str(paramsHat(2))])
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Because of the risk-aversion of investors, theoretical models often conclude that riskier assets should in
general coincide with higher expected returns, since investors demand higher compensation for the risk
involved. As a first application of the linear model, we want to investigate whether this positive relationship
can be verified for German stock data. Therefore, we will download historical data of all 30 components of
the German stock market index DAX, estimate their mean return and return standard deviation, and regress
the mean returns on the standard deviations. Note that standard deviation is only one way to measure
inherent risk, and one common criticism is that the symmetrical nature of standard deviation measures
positive deviations the same way as negative ones.

% specify start and end point of investigation period
dateBeg = '01011990';
dateEnd = '01072011';

% download data of all components: dax_comp is structure array
daxComp = hist_stock_data(dateBeg, dateEnd, 'ADS.DE', 'ALV.DE',...
    'BAS.DE', 'BAYN.DE', 'BEI.DE', 'BMW.DE', 'CBK.DE', 'DAI.DE', ...
    'DB1.DE',...
    'DBK.DE', 'DPW.DE', 'DTE.DE', 'EOAN.DE', 'FME.DE', 'FRE.DE',...
    'HEI.DE', 'HEN3.DE', 'IFX.DE', 'LHA.DE', 'LIN.DE', 'MAN.DE',...
    'MEO.DE', 'MRK.DE', 'MUV2.DE', 'RWE.DE', 'SAP', 'SDF.DE',...
    'SIE.DE', 'TKA.DE', 'VOW3.DE');

When downloading data of so many different stocks at Yahoo!finance, we usually will observe different
sample sizes of the individual time series. This also has to be taken into account when stocks of different
countries are involved, since deviating holidays will lead to different sample sizes. Let's first investigate
the sample sizes.
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% preallocate storage variables for first dates and samples sizes
firstDates = zeros(size(daxComp));
sampleSizes = zeros(size(daxComp));

% extract first date and sample size of each component
for ii=1:numel(firstDates)
    firstDates(ii) = datenum(daxComp(ii).Date(end));
    sampleSizes(ii) = numel(daxComp(ii).Date);
end

% display first dates as strings to command window
fprintf('\nThe respective first observations are given by:\n')

for ii=4:4:numel(daxComp)
    % display four dates per row
    fprintf([datestr(firstDates(ii-3), 'dd-mmm-yyyy') ', '...
        datestr(firstDates(ii-2), 'dd-mmm-yyyy') ', ' ...
        datestr(firstDates(ii-1), 'dd-mmm-yyyy') ', ' ...
        datestr(firstDates(ii), 'dd-mmm-yyyy') '\n'])
end

% if numel(daxComp) is not divisible by 4
remaining = mod(numel(daxComp), 4);
nMultiplesOfFour = (numel(daxComp) - remaining) / 4;
nAlreadyShown = nMultiplesOfFour * 4;
for ii=1:remaining
    if(ii==1)
        str = datestr(firstDates(ii + nAlreadyShown), 'dd-mmm-yyyy');
    else
        str = [str ', ' datestr(firstDates(ii + nAlreadyShown),...
                                'dd-mmm-yyyy')];
    end
end
fprintf(str)

% get ticker symbol of component with minimum sample size
tSym = daxComp(find(sampleSizes == min(sampleSizes))).Ticker;

% display with sample sizes
fprintf(['\nThe minimum sample size occurs for ' tSym ...
    '.\nThere are only %2i observations.\n'], min(sampleSizes))

The respective first observations are given by:
03-Jan-2000, 03-Jan-2000, 03-Jan-2000, 03-Jan-2000
03-Jan-2000, 03-Jan-2000, 03-Jan-2000, 03-Jan-2000
05-Feb-2001, 03-Jan-2000, 20-Nov-2000, 03-Jan-2000
03-Jan-2000, 03-Jan-2000, 03-Jan-2000, 03-Jan-2000
01-Jan-2003, 14-Mar-2000, 03-Jan-2000, 03-Jan-2000
03-Jan-2000, 03-Jan-2000, 03-Jan-2000, 03-Jan-2000
28-Nov-2000, 03-Aug-1998, 03-Jan-2000, 03-Jan-2000
03-Jan-2000, 28-Dec-2007
The minimum sample size occurs for VOW3.DE.
There are only 656 observations.
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This index refers to VOW3.DE, standing for Volkswagen. Since all other sample sizes are large enough,
we simply exclude Volkswagen from the analysis.

% delete Volkswagen from data
indexOfMinimumSampleSize = find(sampleSizes == min(sampleSizes));
daxComp(indexOfMinimumSampleSize) = [];
firstDates(indexOfMinimumSampleSize) = [];
sampleSizes(indexOfMinimumSampleSize) = [];

% get new minimum
fprintf(['\nThe new minimum now is %2i, which seems to be\n'...
    'sufficient for reasonable analysis.\n'], min(sampleSizes))

The new minimum now is 2199, which seems to be
sufficient for reasonable analysis.

Exercise:

Since the availability of data for individual DAX components changes from time to time, it is not guar-
anteed, that there will always be only one company with insufficient data. A better way hence would be
defining a certain minimal sample size as threshold. Then, all companies with less data should be removed
automatically.

In order to eliminate data points with missing values and to adjust the data to the usual convention with
chronologically increasing points in time, we make use of the function processData(). Also, string dates
are converted to serial dates, and the already used data of the German stock index is included.

tic
[daxDates daxPrices] = processData([daxComp daxCrude]);
toc

Elapsed time is 1.045273 seconds.

The following two queries give an impression about the nature of the output of the function.

% both output are numeric variables
numericVars = [isnumeric(daxDates) isnumeric(daxPrices)]

% get dimensions
size(daxDates)
size(daxPrices)

numericVars =

     1     1

ans =

        2095           1
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ans =

        2095          30

Hence the data consist of about 2000 observations of 30 different stocks (29 DAX components and the
DAX itself), and daxDates is the vector of respective dates in serial dates format. This information will
be stored more meaningful and robust in a structure called daxStocks, together with respective returns,
return dates and ticker symbols.

% assign existing data to daxStocks fields
daxStocks.dates = daxDates;
daxStocks.prices = daxPrices;

% transform to percentage discrete returns
daxStocks.disRet = 100*diff(daxPrices)./daxPrices(1:end-1,:);

% diff() calculates differences between successive matrix entries
c = rand(2)
differences = diff(c)

% get ticker symbols
daxStocks.ticker = {daxComp.Ticker daxCrude.Ticker};

c =

    0.9262    0.3408
    0.1169    0.0367

differences =

   -0.8093   -0.3041

Now that historical returns are given suitable form, we can easily estimate expected returns and standard
deviations. Note that most statistical functions act columnwise. Hence it is always preferable to store
observations of a given variable in a column vector, and use different columns for different variables.

% estimate returns and sigmas of DAX components
expRets = mean(daxStocks.disRet );
sigmaHats = sqrt(var(daxStocks.disRet));

% show in figure, standard deviations on x-axis
close   % close last figure
scatter(sigmaHats, expRets, '.')

% highlight DAX itself
hold on;
scatter(sigmaHats(end), expRets(end), 30,[1 0 0], 'filled')

% estimate regression line
betaHat = [ones(numel(sigmaHats), 1) sigmaHats']\expRets';
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% calculate regression line
xLimits = get(gca, 'XLim');
grid = linspace(xLimits(1), xLimits(end), 200);   % divide
                                    % specified interval in 200
                                    % parts of equal size
yVals = [ones(numel(grid), 1) grid']*betaHat;

% include regression line in red
plot(grid, yVals, 'r')

% get R^2 from existing MATLAB function
stats = regstats(expRets, sigmaHats',...
    'linear', 'rsquare');
title(['R-square of regression: ' num2str(stats.rsquare)])
xlabel('estimated standard deviations')
ylabel('estimated mean returns')

Although the regression line exhibits an increasing slope as theory suggests, the R-squared of the regression
is rather small. Evidence for a positive relation between return and risk is rather weak.

CAPM
The capital asset pricing model tries to explain asset pricies. It is set up on the assumption, that investors
only get compensated for that part of an asset's risk that can not get diversified away in a portfolio. Shortly
speaking, each assets partly exhibits comovements with the market, called systematic risk. Since this risk
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component underlies each asset, it can not be diversified away. Hence, investors need to be compensated
for it. In contrast to that, the remaining risk inherent in an asset is called the idiosyncratic risk. This com-
ponent is stock specific, and hence not correlated with idiosyncratic components of other firms. Hence, in
a large portfolio of assets, this component could be diversified away.

In order to measure each assets' comovement with the market, we perform a linear regression of the daily
returns on daily returns of a market index. Note that the theory is based on dependence to a market portfolio,
where our market index here is only an imperfect substitution.

% preallocate vector for estimated betas
betas = zeros(1, 29);
for ii=1:29
    betas(ii) = regress(daxStocks.disRet(:, end),...
        daxStocks.disRet(:, ii));   % no intercept involved
end

% plot betas with expected returns
close
scatter(betas, expRets(1:end-1), '.')

% estimate regression coefficients with intercept
betaHat = [ones(numel(betas), 1) betas']\expRets(1:end-1)';

% include regression line
xLimits = get(gca, 'XLim');
grid = linspace(xLimits(1), xLimits(end), 200);
yVals = [ones(numel(grid), 1) grid']*betaHat;

hold on;
plot(grid, yVals, 'r')
xlabel('estimated beta coefficients')
ylabel('estimated mean returns')
title('CAPM disproved?')
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Note that this analysis is only a very rough investigation of the validity of the CAPM, with many sources of
error involved (only substitute for market portfolio, applied to returns instead of excess returns,...). In fact,
the purpose merely was to come up with some easy example of regression analysis in finance. So do not
make the mistake to interpret the investigations as scientifically rigurous and adequate approach. As part
of a more thorough investigation at least also returns of larger time horizons would have to be examined.

Stock price prediction based on curve fitting
While the previous part was concerned with looking for an explanatory variable for stock returns, we now
will try to find regularities in stock prices that allow to make predictions on future price movements. That
is, in course of its evolution, any stock price seems to follow some trend at some point of time. Looking
at charts of stock prices one usually might be tempted to assume that such trends could be identified in
real-time, thereby allowing for speculative trading opportunities. The idea in this chapter is to fit certain
functions to historic stock price paths. Given that the function seems to be a good approximation to past
prices, chance might be that it will still be an approximation in the future, so that our function could be used
as stock price predictor. However, the approach taken here is slightly different. Based on curve fitting tools,
positive trends in stock prices shall be identified. But instead of trying to exactly predict future prices, we
only try to identify points in time where the current dynamic changes. That is, we only try to predict break-
offs of rising stock prices, without bothering with the exact type of regime evolving after the break-off.

Given that returns fluctuate around a constant positive value, prices should exhibit exponential growth.
Such growth rates best can be seen on logarithmic scale, since they correspond to a straight line here.
Hence, we first extend the data structure with an additional field logPrices. Visualization shows that DAX
prices tend to exhibit super-exponential growth during certain periods.

% get log prices
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dax.logPrices = log(dax.prices);

% specify subperiod as strings
begT = '01-Jun-1993';
endT = '29-Jul-1998';

% find indices associated with considered period
indS = find(dax.dates > datenum(begT, 'dd-mmm-yyyy'), 1);
indE = find(dax.dates > datenum(endT, 'dd-mmm-yyyy'), 1);

Note: it is not possible to access the prices with indexing based on the dates of the time series. Hence,
dates always have to be converted to chronological indices first. However, the finance toolbox of MAT-
LAB also includes financial time series objects (fints) that can be indexed by date strings. For example,
myfts({'05/11/99', '05/21/99', '05/31/99'}) extracts the values of the fints object myfts at the specified dates.

% create figure window
close
figure('Position', [50 50 1200 600])

% plot DAX prices with subperiod highlighted
ax(1) = subplot(2, 1, 1);
plot(dax.dates, dax.prices, 'Color', [1 0.8 0.8]);
hold on;
plot(dax.dates(indS:indE), dax.prices(indS:indE));
datetick 'x'
title('linear scale')

% plot log DAX prices with subperiod highlighted
ax(2) = subplot(2, 1, 2);
plot(dax.dates, dax.logPrices, 'Color', [1 0.8 0.8]);
hold on;
plot(dax.dates(indS:indE), dax.logPrices(indS:indE)); shg
datetick 'x'
title('logarithmic scale')

% connect axes of both graphs: zooming in applies to both plots
linkaxes([ax(1) ax(2)], 'x');
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Although it would be easier to fit a straight line to log prices we want to estimate to best fitting expo-
nential growth for normal prices using an optimization. Hence, the exponentially growing function f(x)=
a_1*exp(a_2*x) shall be fitted to the stock prices. Therefore, parameters a_1 and a_2 will be chosen such
that the mean squared error between the exponential function and the historic price chart is minimized.

% create new grid for subperiod, starting at 1
daysSinceBeg = 1:numel(dax.dates(indS:indE));   % stock market
        % prices are treated as equidistant, with no distinction
        % between Friday / Monday or Monday / Tuesday

% define exponential function as anonymous function
expFun = @(x, params) params(1)*exp(x.*params(2));

% evaluating exponential function similar to normal functions
fprintf(['Calling the anonymous function according to '...
    'usual syntax\nexpFun(3,[0.5 0.5])\nreturns the value'...
    ' %1.2f.\n'], expFun(3,[0.5 0.5]))

Calling the anonymous function according to usual syntax
expFun(3,[0.5 0.5])
returns the value 2.24.

% define mean squared error function as anonymous function
errFun = @(params, x, prices)...
    sum((prices(:) - expFun(x(:), params)).^2);  % for any price
        % series given by prices and associated x values the
        % error function computes the mean squared error between
        % exponential function with parameters params and the
        % price series

% init guess for optimization
params0 = [dax.prices(indS) ...
    log(dax.prices(indE) - dax.prices(indS))/...
    (dax.dates(indE) - dax.dates(indS))];
        % params(2) chosen so that it fulfills the equation:
        % exp((daysSinceBeg(end)-daysSinceBeg(1))*a_2)
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        %           != prices(end)-prices(1)

% specify options for optimization
opt = optimset('display', 'off', 'TolX', 1e-18, 'TolFun', 1e-8);

% optimization
[bestParams expMSE] = fminsearch(errFun, params0, opt,...
    daysSinceBeg, dax.prices(indS:indE));

Note: since the objective function, which shall be minimized, also depends on the grid values of x and
the given price vector prices, these data has to be given as fixed input into the optimization, since the
optimization shall only be applied to the parameter values. Therefore, the parameters of interest have to
appear in the objective function as one vector and as first input. Additional inputs are included in the
optimization routine fminsearch as additional inputs at last positions. However, this syntax is only allowed
when the objective function is given as function handle to an anonymous function. An example of a similiar
optimization task involving an already existing MATLAB function will be given further below.

% calculate associated exponential function values
expVals = expFun(daysSinceBeg, bestParams);

% include in given figure
subplot(2, 1, 1);
plot(dax.dates(indS+daysSinceBeg), expVals, 'r'); % Note:
        % dax.dates(indS) + daysSinceBeg does not work, since
        % dax.dates is not numbered consecutively. dax.dates
        % refers to business days, not consecutive days!
xlabel('dates')
ylabel('prices')

subplot(2, 1, 2);
plot(dax.dates(indS+daysSinceBeg), log(expVals), 'r'); shg
xlabel('dates')
ylabel('prices')

% calculate mean squared error on logarithmic scale
MSE = sum((dax.logPrices(indS+daysSinceBeg)-log(expVals(:))).^2);

% display mean squared error
fprintf(['\nThe mean squared error between the exponential fit'...
        ' and\nthe stock price path is %3.4f.\n'], MSE);

The mean squared error between the exponential fit and
the stock price path is 32.2208.
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With the straight line as benchmark, one can see that the stock price path exhibits a convex curvature
during the subperiod. This pattern indicates super-exponential growth rates. Such growth rates usually are
associated with stock market bubbles. Our intention now will be to identify evolving stock market bubbles,
and try to predict the time they burst. According to Didier Sornette and his colleagues, stock market bubbles
can be approximated with super-exponentially growing log-periodic power law (LPPL) functions. These
are super-exponentially growing functions with finite-time singularities and oscillating behaviour, given
by the formula: f(x) = a_1 + a_2*(a_3-x)^(a_4)* (1+a_5*cos(a_6*log(a_3-a_8*x)+a_7). In order to get an
impression about the appropriateness of a LPPL function, we will fit it the subperiod and compare its mean
squared error to the error of a simple exponential fucntion. Furthermore, we will examine whether the date
of the estimated finite-time singularity could be used as indicator of a forthcoming change in regimes.

% fit LPPL model to subperiod
params = lpplFit(dax.logPrices(indS:indE));

% calculate approximation values to stock prices
[vals derivs] = lpplFunc(params);

% create associated grid
grid = dax.dates((1:(params(3)/params(8)-1))+indS);
    % Note: params(3)/params(8) denotes the time in business days
    % from beginning of subperiod until finite-time singularity.

% include in given figure
subplot(2, 1, 2);
plot(grid, vals, 'g'); shg

% include line for finite time singularity
yLimits = get(gca, 'yLim');
line(dax.dates(floor(params(3)/params(8)+indS))*[1 1], yLimits,...
    'Color', 'k')

% calculate mean squared error on logarithmic scale
MSE_LPPL = sum((dax.logPrices(indS+daysSinceBeg)-...
    (vals(daysSinceBeg)')).^2);
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fprintf(['\nIn contrast to the MSE of ' num2str(MSE) ...
    ' obtained before,\n we now get a MSE of only '...
    num2str(MSE_LPPL) '.\n'])

In contrast to the MSE of 32.2208 obtained before,
 we now get a MSE of only 3.855.

When looking at the figure, we can see that the fitted LPPL model at the time of the end of the subperiod
could indicates an impending regime change, since the critical point given by the finite-time singularity
lies only days ahead.

In order to examine the validity of the LPPL model on further stock market indices, you can uncomment
the following lines of code and interactively conduct experiments on historic data. As examples of further
accurate subperiod fitting, take a look at Hang Seng index from 15-Dec-2004 to 21-Nov-2007, which
leads to an estimated regime change 52 business days ahead, or the German stock market index from 15-
Oct-1992 to 29-Jul-1998.

% % Interactive examination of further stock market indices.
%
% %tickerSyms = cell(8, 1);
% tickerSyms = {'^GDAXI';'^SMSI';'^SSMI';...
%     '^OMXSPI';'^NDX';'^DJI';'^HSI';'^SSEC'};
%
% indexNames = {'DAX'; 'Madrid General';...
%     'Swiss Market'; 'Stockholm General'; 'NASDAQ'; ...
%     'Dow Jones Industrial'; 'Hang Seng';...
%     'Shanghai Composite'};
%
% for ii=1:numel(tickerSyms)
%     fprintf(['\nIndex investigated: ' indexNames{ii} '\n'])
%     data = hist_stock_data(begT, endT, tickerSyms{ii});
%     [data_dates data_prices] = processData(data);
%     LPPLinteractively(data_prices, data_dates)
%     title(indexNames{ii})
%     hold off
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% end

Published with MATLAB® 7.14
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