Introduction to MATLAB

Table of Contents

... 1

LU gL TRV Z= ! o] (- 1
Y D 0o Tor= 1= = o o 5
Y Do ot U1 = o) o 8
GraphiCal OULPULttt e e et e e e e e eeaans 11
o1 1 o T 12
FOr-100pS and [NEAMZALTIONcieiei e 17
SUNG VAITADIES ... et 25
(00 IR YZ= T = o] 1= 25
SETUCIUNE VANAIIES ..oneeeeeeee e e e e e e e 26

Christian Groll

Seminar fir Finanzokonometrie, Ludwig-Maximilians-Universitat Minchen.

All rights reserved.

Thefollowing script presents an introduction to basic MATLAB commands. It shows how different types
of variables can be handled and manipulated in MATLAB, as well as how MATLAB can be used to
produce graphical output.

Numeric variables

In MATLAB, an assignment of a certain value to a variable has to be implemented with an equality sign,
where any expression on the right-hand side of the equality is assigned to the variable which is specified
on the left-hand side. Variable namesin MATLAB have to start with a letter, which can be followed by
any number of |etters, digits or underscores. Note that MATLAB is case sensitive, i.e. that lowercase and
uppercase | etters are distinguished.

% assign value 2 to a variable naned x
X =2

Y ou can also see the effect of the assignment in the workspace window. The column "value" now shows
a 2 next to the entry x. The same syntax also can be used when the value of a given variable shall be
assigned to another variable.

% assi gn val ue of variable x to variable b
b = x

Introduction to MATLAB

In order not to trigger an error, every variable on the right-hand side of an equality sign already has to
possess avalue.

% assi gnment with still undefined variable
try
d=c
catch err
err.message
end

0. 6529 0. 3000
0. 3815 0. 3401

While the first expression assigns the value of the variable x to the variable b, execution of the second
expression will lead to an error, since the variable on the left-hand side is not yet defined. Leaving the
error untreated would force MATLAB to stop the execution of the script, and throw an error message in
red letters. In order to avoid an abortion, the error is treated with atry-catch construction at this point. To
see the result of an untreated error, just uncomment the following line and execute the cell again.

%d = c

In order to assign a bundle of values to one variable, the values can be stored lined up horizontally or
vertically, so that the containing variable becomes a vector. When values shall be lined up horizontaly,
MATLAB needs to know the index indicating the position of the value in the vector. Thereby the first
position in avector always getsindex 1, contrary to 0 asin some other programming languages.

x(2) =4

Assigning value 4 to the second position renders x into a 1x2 horizontal vector. To meet larger generality,
it is best to interpret scalar values and vectors as special cases of the larger class of matrices right away.
Hence, any assignment needs two indices to uniquely specify aposition in a matrix.

x(1,2) =4

Following the usual mathematical notation, the first index refers to the vertical position, and the second
index to the horizontal position.

Introduction to MATLAB

x(2,1) = 3
x(2,2) =4
X =

2 4

3 0
X =

2 4

3 4

Explained more precisely, the original assignment x = 2 actually performs two commands. First, the value
2 is assigned to the variable x. And second, the new value of the variable x is displayed in the command
window.

In order to prevent MATLAB from displaying the new state of a variable, each assignment has to be
equipped with a semicolon at its end. Hence, displaying the new value of a variable after an assignment
can be seen as something like a default setting, which has to be denied explicitly when it is not wanted.

% the follow ng assignnent is not displayed
x(2,2) = 8;

%to query the new value, type the variable nane
X

N
o A~

Given that we assign avalue outside of the already used rectangular of indices, the matrix isautomatically
increased to include the new index, while elements of the enlarged matrix without specified values are
automatically filled with zeros.

x(3,4) = 8
X =
2 4 0 0
3 8 0 0
0 0 0 8

Note that MATLAB isforced to automatically enlargen the matrix, since it can only work with numerical
variables of rectangular shape. An example with occurring error in case of misspecified matrix shape will
follow at the end of the next cell.

Introduction to MATLAB

In order to simplify the assignment of a bunch of numbers, all matrix entries also can be assigned all at
once. Be careful: the syntax in this case requires SQUARED brackets! Furthermore, the semicolonswithin
the squared bracketstell MATLAB to assign the next values to positions one row further down.

% assi gning nultiple values at once
X =[120; 134, 22 2]

X =
1 2 0
1 3 4
2 2 2

Note: for clarity one can also use commas in order to better delimit individual entries within arow.

x =12, 3, 4, 1, 3, 1; 2, 2, 2]

X =
2 3 4
1 3 1
2 2 2

As already mentioned, unequal dimensions produce an error.

try
k=[22222 11; 4444444 4]

catch err
err. message
end

ans =

Error using vertcat
CAT arguments di mensions are not consistent.

Once a variable has been initialized through value assignments, there are several waysto find out all its
valuesor thevalue at any entry. Thefirst way isto display the variable to the command window by simply
typing its name. However, when dealing with large matrices, it is not convenient to let MATLAB display
the complete matrix. A preferable way isto let MATLAB display only the entry required, which can be
done by telling MATLAB the variable name associated with an index in square brackets.

% get value at row 1, colum 2
x(1, 2)

ans =

Introduction to MATLAB

A different way to find out any value of avariable isto use the variable editor, which can be opened either
by double-clicking the variable's name in the workspace, or by highlighting the variable's name, right-
clicking and chosing "Open".

Matrix Concatenation

Since MATLAB originally was built on matrix calculations, MATLAB programs involve alot of matrix
manipulations. Therefore, MATLAB providesan auxiliary merging-operator, in order to facilitate merging
and manipulation commands. This merging-operator is executed with squared brackets, and is able to
horizontally or vertically concatenate matrices, which is the process of joining small matrices to make
bigger ones. Strictly speaking, an assignment of multiple values at once is nothing el se than horizontally
and vertically glueing together scalar values.

% gl uei ng together values 3 and 4 horizontally, assigning to c
c = [3 4]

% two ways to add additional row
d =1[34;, 2 3];
d=1[c; 23],

% gl uei ng together block matrices
[[d; c] x]
c =
3 4
ans =
3 4 2 3 4
2 3 1 3 1
3 4 2 2 2

In order to simplify code, some often used matrices can be accessed by calling existing functions.

% determne matri x size
m= 2;
n = 3;

% create matri x containing ones
onesMatr = ones(mn)

% create nmatri x containing zeros
zeroMatr = zeros(mn)

% create matrix containing uniformy distributed random nunbers
uni fMatr = rand(m n)

Introduction to MATLAB

oneshatr =
1 1 1
1 1 1
zerolatr =
0 0 0
0 0 0
uni f Matr =

0.9189 0. 4425 0. 9453
0. 4563 0.4542 0.2191

In addition, MATLAB has an operator to create numerical sequences with constant increments. This op-
erator is called with three numbers and two colons.

% increnents of size 2, starting at 1, ending at 11
1:2:11

% increnents of size 5.5, starting at 14, ending at 40
14:5.5: 40

ans =

14.0000 19.5000 25.0000 30.5000 36.0000

In case of increments of size 1, one can a so use the short notation involving only one colon together with
anumber specifying the starting value and a number specifying the ending value.

% increnents of size 1, starting at 1, ending at 4
1: 4

Both concatenation and the colon operator to create number segquences can be used to simultaneously
retrieve information about matrix entries. The basic notation hereisthat avector at thefirst entry in square
brackets refers to all rows involved, while a vector at the second entry refersto all columnsinvolved. In
doing so, the set of al indicesinvolved is given by the intersection of the specified rows and columns.

% di splay entries (1,3), (1,2) and (1,3) of x
play

Introduction to MATLAB

[x(1,3) x(1,2) x(1,3)]

% sane result, as intersection of row 1 with col umms
x(1,[3 2 3])

% 2x2 upper bl ock matrix
x([12],[12])

% usi ng nunber sequence

x(1:2,1:2)
ans =
4 3 4
ans =
4 3 4
ans =
2 3
1 3
ans =
2 3
1 3

In cases of unknown matrix size, the last element also can be accessed with replacement statement "end".

% di splay |last two rows and | ast two col ums
x(2: end, 2: end)
x(end- 1: end, end- 1: end)

ans =
3 1
2 2
ans =
3 1
2 2

Using the colon operator without additional numbers denotes either a complete row or a complete column
of amatrix.

Introduction to MATLAB

% concatenate once the first and twice the third colum of a
c = [x(:,1) x(:,3) x(:,3)1];

% additionally append | ast row of x
c =[c; x(end,:)]

NNEDN
NNEFE A
NNEFE A

The same syntax also can be utilized to delete complete columns or rows from a matrix. Just specify the
desired horizontal or vertical line viathe colon operator, and assign an empty matrix to it.

% del ete third row

c(:,3) =[]

NNEDN
NNEFE B~

Matrix calculation

MATLAB is able to perform the standard operations on matrices.

% addi tion
x =12 3; 4 2];
b=1[1 2];

bMatr = b(1:2,[1 1])
cC = X + bMatr

% subtraction
cC =X - bMtr;

bvatr =
1 1
2 2
C =
3 4

Introduction to MATLAB

While addition and subtraction operate elementwise, matrix multiplication does not. Matrix multiplication
is defined as scalar products of row and column vectors.

% multiplication of 2x2 matrix ¢ with 2x1 vector b
matrProdl = c*b
matrProd2 = [c(1,1)*b(1)+c(1,2)*b(2); c(2,1)*b(1)+c(2,2)*b(2)]

mat r Prod1l

5
2

mat r Prod2

5
2

Matrix division is defined as inversion to matrix multiplication on square matrices.

matrProd = x*c

%retrieve C by reversion
mat r Prod/ c
X

%this equals nmultiplication with inverse of ¢
mat r Prod*i nv(c)

matr Prod =
8 4
8 8
ans =
2 3
4 2
X =
2 3
4 2
ans =

Introduction to MATLAB

However, when working with MATLAB in statistical applications, we usually interpret matrices as tables
of data. Hence, performing matrix operations on matrices might not be the most natural way to process
numeric variables. For example, let nSold denote a vector containing the number of sold products on
consecutive days, while prices denotes a vector which contains the average achieved price per sdle. We
want to get avector profits of same length as nSold and prices, containing the profits for each day.

%initialize sale vector
nSold =[2 3 2 1]

%initialize price vector
prices =[2.3 2.4 2.3 2.0]

% notation for elenentwi se rmultiplication
profits = nSol d.*prices

nSol d =

prices =

2. 3000 2. 4000 2. 3000 2. 0000

profits =

4.6000 7.2000 4.6000 2. 0000

While addition and subtraction are the same for arrays and matrices, element-by-element operations on
arrays have to be called with a dot in front of the operator. This rule also applies to some additional op-
erators. Hence, element-wise division is called by ./, while exponentiating can be conducted with the A
operator. Together with the numeric sequence operator, element-wise operations are very useful to eval-
uating functions on certain values and creating tables. For example, say you would have to evauate the
function f(x)=3*x"2+7*x at values 1 to 10.

%init(ialize) grid for points that shall be eval uated
grid = 1:10;

% for each entry of grid, evaluate function per elenent-w se
% oper ati ons

grid

squared = grid."2

squar edScal ed = 3*squar ed

scaled = 7*grid

val s = squaredScal ed+scal ed

10

Introduction to MATLAB

grid =

1 2
squared =

1 4

squar edScal ed

3 12
scal ed =
7 14
val s =
10 26

Graphical output

Whenever we need to visualize the graph of a function based on existing tabulated values, we have to
draw aline through the calculated values, thereby interpolating the function in between. The interpolated
values are determined by MATLAB itsdlf, so that we only have to pass the tabulated valuesto MATLAB.
One-dimensional functions usually are best visualized with the command plot, which draws aline through
specified points. Since each point of the function is given by two coordinates (x- and y-value), the plot

27 48 75

21 28 35

48 76 110

command also needs both dimensions as input.

% passi ng coordinates for

plot(grid,vals)

% vect or

36

108

42

150

vect or

49

147

49

196

64

192

56

248

81

243

63

306

each points to visualization function

of x-val ues, of y-val ues

10

100

300

70

370

11

Introduction to MATLAB

400 T T T T T T T T

250

300

250

200

150

100

50

When using any graphical visualization command an additional window opens, which has to be under-
stood as consisting of two parts. Thefirst part isthe figure window itself. This part, for example, contains
information about the size of the window as well as about the reference number of the figure. The sec-
ond part is an axes object, and can be seen as the white colored rectangle within the gray window. This
axes object contains information about the used axes, where they begin and where they end, and where
additional ticks are shown in between. Furthermore, 1abels of the ticks, fontsizes of the labels as well as
coordinatesfor the exact positioning of thewhite rectangleinside of the gray rectangle are properties of the
axes object. These properties can not be accessed directly, but have to be changed viamethods performing
on the object (get() and set()).

Functions

Besides the existing operators that can be used to data manipulation and calculation, MATLAB aso in-
cludes functions that can be called. Usually, a call to a function requires some additional input handed
over to the function and is associated with some output calculated by the function. For example, function
exp() calculates the exponentia function at a given value.

% cal cul ate exponential function at point 3
exp(3)

% cal cul ate 1 og function at point 1
log(1)

ans =

12

Introduction to MATLAB

20. 0855

ans =

As already outlined above, financial applications usually perform analysis on data, so that matrices rather
have to be seen as arrays or tables of data, instead of as matrices expressing algebraic content. This way,
element-wi se operations become more accentuated, which isthe reason that most built-in MATLAB func-
tions accept matrices as input, where each entry will be processed by the function on its own. This way
we can cal culate more than one point of the exponential function at atime.

%init points where exp shall be eval uated
grid = -4:0.02: 4;

% cal cul at e associ ated function val ues
vals = exp(grid);

Using function size, we can see that the dimensions of the output vals complies with the dimensions of
the input vector. Thisis not surprising, since exactly one function value has to be calculated for each point
given in the input vector.

% get size of input
i nput Si ze = size(grid) % first number: nunber of rows

% get size of output
out put Si ze = size(val s)
i nput Si ze =

1 401

out put Si ze =

1 401

Now the exponential function can be visualized in the known way.

% vi sual i ze function val ues
plot(grid,vals)

13

Introduction to MATLAB

E[:l T T T T T T T

50

40

20

20

10

| =

As afirst example for manipulation of the axes object, suppose we wanted to shrink the section of the x-
values depicted, which equals zooming into the picture. In order to apply a method to an axes object, we
first have to specify the exact object. In this casg, it is possible to refer to the axes object as current axes,
sinceit isthe last axes object that we created. Thisis done by gca (get current axes).

% use nmethod set() on current axes, change property x-limts
set(gca, ' xLim,[-2 2])

14

Introduction to MATLAB

Beforewewill conduct afirst meaningful application, we now shortly want to deal with amain problemin
computer based applications. Suppose you want to perform a certain manipulation on your data. How do
you know, whether there already exists aMATLAB function performing this task, and if there was any,
how would you find it? One way is to use the lookfor command. With it, you can search the MATLAB
documentary for certain keywords. MATLAB then will search thefirst line of the help text of all functions
on the search path for a certain keyword.

% find a function that perfornms pernmutati on on vector elenents
| ookfor pernutation

randperm - Random pernutati on.

per ns - Al possible pernutations.

anmd - Approxi mate m ni nrum degree pernutation.
col and - Col um approxi mate m ni num degree pernuta
col perm - Col um pernutation.

dnperm - Dul mage- Mendel sohn pernut ati on.

synmand - Symmetric approximate mni num degree pern
synrcm - Symmetric reverse Cuthill-MKee pernutati
create_permnutations - Creates a popul ation of pernutations.
crossover_permnutation - Custom crossover function for traveling s
nut at e_pernut ati on - Customnutation function for traveling sa

Another way would beto let MATLAB display all functionsin agiven category. For example, request all
elementary matrices and matrix manipulation:

hel p el nat

El enentary matrices and nmatrix mani pul ation.

15

Introduction to MATLAB

El ementary matri ces.

zeros
ones

eye

r epmat

I i nspace

| ogspace
freqspace
meshgri d
accumarr ay

Zeros array.

Ones array.

Identity matrix.

Replicate and tile array.

Li nearly spaced vector

Logarithm cal ly spaced vector

Frequency spacing for frequency response.

X and Y arrays for 3-D plots.

Construct an array with accunul ati on

Regul arly spaced vector and index into matrix.

Basic array information.

si ze

| ength
ndi ms
numel

di sp

i sempty
i sequal

i sequal n

Si ze of array.

Length of vector.

Nurber of di nensi ons.

Nurmber of el ements.

Di splay matrix or text.

True for enpty array.

True if arrays are nunerically equal
True if arrays are nunerically equal

i sequal wi t hequal nans - True if arrays are nunerically equal

Mat ri x mani pul
cat
reshape
di ag
bl kdi ag
tril
triu
fliplr
flipud
flipdim
rot 90

find
end
sub2i nd
i nd2sub
bsxfun

ation.

Concat enate arrays.

Reshape array.

Di agonal matrices and diagonals of matrix.
Bl ock di agonal concatenation

Extract |ower triangular part.

Extract upper triangular part.

Flip matrix in left/right direction

Flip matrix in up/down direction

Flip matrix al ong specified dinmension
Rotate matri x 90 degrees.

Regul arly spaced vector and index into matrix.
Fi nd i ndices of nonzero el enents.

Last i ndex.

Li near index fromnultiple subscripts.

Mul tiple subscripts fromlinear index.

Bi nary singl eton expansion function

Mul ti-di mensi onal array functions.

ndgrid
per mut e

i permute
shiftdim
circshift
squeeze

Cenerate arrays for N-D functions and interpolation.
Permmut e array di mensi ons.

I nverse pernute array di nensions.

Shi ft di mensi ons.

Shift array circularly.

Renove si ngl et on di mensi ons.

Array utility functions.

i sscal ar
i svect or
i Srow

True for scal ar.
True for vector.
True for row vector.

16

Introduction to MATLAB

i scol um - True for columm vector.
ismatri x - True for matri x.

Speci al variabl es and constants.

eps - Floating point relative accuracy.

r eal max - Largest positive floating point nunber.
real mn - Smal | est positive floating point nunber.
i nt max - Largest positive integer val ue.

intmn - Smal | est integer val ue.

pi - 3.1415926535897. ..

[- lmaginary unit.

i nf - Infinity.

nan - Not - a- Nunber .

i snan - True for Not-a-Nunber.

i si nf - True for infinite el enents.

isfinite - True for finite elenents.

] - lmaginary unit.

why - Succi nct answer.

Speci al i zed matri ces.

conpan - Conpani on matri x.

gallery - Test matrices.

hadamar d - Hadarmard matri x.

hankel - Hankel matrix.

hilb - Hilbert matrix.

i nvhilb - Inverse Hilbert matrix.

magi ¢ - Magi c square.

pascal - Pascal matrix.

peaks - A sanmple function of two variabl es.
rosser - Classic synmetric eigenval ue test problem
toeplitz - Toeplitz matrix.

vander - Vander nonde natri X.

wi | ki nson - Wl kinson's eigenvalue test matri x.

Other category names would be "specfun” for specia functions and "elfun” for elementary functions. Of
course, an additional and usually worthwhile option would beto simply type some keywordsinto Google's
search engine.

For-loops and linearization

Now we want to plot the density function of anormal distribution. The formular for the density functionis
given by f(x)=(2* pi* sigma)”(-0.5)* exp(-0.5* ((x-mu)*2/sigma)). In the course of this application we also
introduce the syntax for loopsin MATLAB, and show their performance with a different approach using
simple matrix calculations. A |oop executes aseries of commandsfor a pre-specified number of iterations.
However, any loop usually needs a running variable that changes at each iteration. For example, if you
want to store the results of your code inside the loop, you would have to adapt the index of your storing
variable, in order to not overwrite your results. The syntax of loops is rather simple. Just type "for" to
indicate the beginning of aloop, choose a running variable and specify a vector of values which will be
taken by the running variable.

% init parans
m = 2,

17

Introduction to MATLAB

sigma = 1.4,
grid = -2:0.01: 6;
tic % start MATLAB s stopwatch to return processing tinme of
% for |oop
for ii=1:nunel (grid) % Chronol ogically, for each point in grid.
% nurrel () returns nunber of elenents
x = grid(ii); % current x-value for density eval uation

y(ii) = (2*pi *sigma)”~(-0.5)*exp(-0.5*((x-mu)"2/sigm));
% adapt index of storing variable to avoid overwiting
end % end of | oop
timel = toc; % get tinme required to execute code fromtic to
%toc and store it in variable tinel

While the code is very intuitive and simple, there are two main drawbacks with respect to performance.
First, since you have not told MATLAB prior to the execution of the loop, how large your storing variable
y will get, MATLAB will take any free space in its memory to store the variable y at the first run of
the loop. However, since the required storage of y will increase during each loop, it could happen that
y at some point will need more storage than what is available at the previously chosen location in its
memory. In consequence, MATLAB would haveto take all stored resultsiny and shift them to another and
bigger placein its memory, which is rather time-consuming. Therefore, you always should tell MATLAB
beforehand how largeyour storagevariablewill get. And secondly, since MATLAB isoptimized for matrix
calculations, you always haveto try to linearize your code in order to avoid for loops. Hereis an improved
version of the code, using element-wise function evaluations on grid:

tic
y = (2*pi*sigm)"(-0.5) * exp(-0.5*(grid-mu)."2/sigm);
time2 = toc;

% visualization to check for m stakes
plot(grid,y)

% cal cul ate factor of perfornance inprovenent
factor = tinmel/tine2;

% fornmatted out put

fprintf('\nSecond code is faster with factor 93.3f\n',factor);
% \n stands for change to new |ine
% 9%3.3f is the format for the ouput of the variable inserted

Second code is faster with factor 87.628

18

Introduction to MATLAB

0+35 T T T T T T T

0,3

0,25

0,2

0,15

0,1

0,05

| =

Of course, such an important function is already implemented in MATLAB. Hence, the same results also
can be obtained by

%y = nornpdf (grid,mu, signa);
In order to further highlight the importance of preallocation, we will try a second example.

tic
N = 10e3;
x(1) = 1000;
for k=2: N
x(k) = 1.05*x(k-1);
end
timel = toc

t
N = 10e3;
X zeros(N, 1);
x(1) = 1000;
for k=2:N
x(k) = 1.05*x(k-1);

n 1o

end
tinme2 = toc

fprintf('\nPart one takes %.3d tinmes longer.\n',tinmel/tinme2)

19

Introduction to MATLAB

Part one takes 1.287e+00 times | onger.

The same performance improvements also apply to the case of a two-dimensiona normal distribution.
However, we first introduce two further helpful operatorsin MATLAB. Thefirst is the transpose opera-
tor, which forms the complex conjugate transpose of a matrix, i.e. it simply transposes matrices without
complex part.

%init random matri x
X = rand(3)

% show t ransposi tion
transp = x'

X =
0. 8824 0. 7660 0. 4530
0.0199 0. 3428 0. 0102
0. 3418 0.6188 0. 5991
transp =
0. 8824 0.0199 0. 3418
0. 7660 0. 3428 0.6188
0. 4530 0. 0102 0. 5991

The second operator is the vectorization operator. Applied to a matrix, it takes each column and attaches
it at the bottom of the previous columns to get one large vector containing all entries of matrix a.

% vectorization, with subsequent transposition to keep displ ayed
% out put space-savi ng

x(:)'
ans =
Col ums 1 through 7
0. 8824 0. 0199 0. 3418 0. 7660 0. 3428 0.6188 0. 4530
Col ums 8 through 9
0. 0102 0.5991
These operationswill prove useful in the performance-improved encoding of the two-dimensional density.
But first we will implement the more easy way using for loops.

% init parans

mu = [4; 0]; % vect or containing both nean val ues
sigm = [1.5; 1]; % vector containing both standard deviati ons
rho = 0.5; % correlation coefficient

20

Introduction to MATLAB

%init grid
grid = -4:0.1:8; % sane grid will be used for both axes

% start stopwatch
tic

% preal | ocate storage matrix for better performance results
z = zeros(nunel (grid), nurmel (grid));
xGid = zeros(nunel (grid), numel (grid)); %since we want to pl ot
yGid = zeros(nunel (grid), numel (grid)); %the results at the end,
% grid coordi nates and density val ues have to be
% arranged in a matrix

% cal cul ate val ues: for each x value, run through all y val ues
for ii=1:nunel (grid) %Il oop for x coordinate / row vector
for jj=1:nunel (grid) % |l oop for y coordinate / colum vec.
XGid(jj,ii) = grid(ii);
yGid(jj,ii) =grid(jj);
x = grid(ii);
y =grid(jj);
z(jj,ii)=(2*pi *sigma(1)*sigma(2)*sqgrt(1-rho”2))~(-1)*...
exp(-(1/(2*(1-rho™2)))*...
((x-mu(1))"2/sigma(l)"2+(y-mu(2))"2/sigma(2)"2-...
2*rho*(x-mu(1))*(y-mu(2))/sigma(1l)/sigm(2)));
% Note: when plotting a matrix, row vectors wl |
% appear in x-direction. Hence, the first for-1oop
% here cal cul ates the val ues along the x-direction,
% and the second al ong the y-direction.
end
end
timel = toc;

Vectorization for two-dimensional problems is quite more demanding than in the one-dimensional case.
However, looking at the implemented for-loops in the cell above you can see that you implicitly evaluated
the density on all possible two-dimensional combinations of the values in the grid vector. Using asimple
example helpsto illustrate this.

exanmpleGid = 1:3;
storageVar = [];
X&' i dExam = zeros(numel (exanpleGid)*[1 1]);
yG i dExam = zeros(nunel (exampleGid)*[1 1]);
for ii=1:nunel (exanpl eGid)
for jj=1:nunel (exanmpl eGid)
xGidExanm(jj,ii) = exanpleGid(ii);
yGidExan(jj,ii) = exampleGid(jj);
storageVar = [storageVar;...
[exampl eGid(ii) exanpleGid(jj)]]; % attaches each
% new poi nt conbi nati on bel ow t he previ ous ones
end
end
st or ageVar
xG i dExam

21

Introduction to MATLAB

yG i dExam

storageVar =

1 1
1 2
1 3
2 1
2 2
2 3
3 1
3 2
3 3
X& i dExam =
1 2 3
1 2 3
1 2 3
yG i dExam =
1 1 1
2 2 2
3 3 3

In effect this code does the following: it choses the value of the x-coordinate, holds it fixed, and runs
through all y-coordinate values. Since in graphical outputs of matrices the x-axis is defined as the row
dimension, the code evaluates column after column of the final density value matrix.

We now have to achieve a similar result without using for-loops. Lets first concentrate on the values of
the x-coordinate matrix. In order to replicate this matrix, we just have to stick three times the original
grid vector above each other. A very useful function for such atask is repmat, which stands for "replicate
matrix", and allows you to form a block matrix consisting of smaller matrices which are replicates of a
given matrix.

% exanpl e
x =[12; 3 4];

%2 replicates of x above each other, 3 next to each other
repmat (x, 2, 3)

ans =

WERWweR
ANODN
WERWweR
ANODN
WERWweR
ANODN

22

Introduction to MATLAB

Hence, the coordinate matrices are obtained by

xCoord = repmat (exanpleGid, 3, 1)
yCoord = repnat (exanpleGid', 1, 3)
xCoord =
1 2 3
1 2 3
1 2 3
yCoord =
1 1 1
2 2 2
3 3 3

Applying the same procedure to the original task:

% start stopwatch
tic

% create coordinate matrices
xGid2 = repmat (grid, nunmel (grid), 1);
yGid2 = repmat(grid , 1, nunmel (grid));

% eval uate density elenentwi se on grid matrices

z2 = (2*pi *sigma(1)*sigma(2)*sqrt(1-rho”2))~(-1)*...
exp(-(1/(2*(1-rho™2)))*. ..
((xGid2-mu(1)).12/sigma(l)r2+. ..
(yGid2-nu(2))."2/sigma(2)"2-...
2*rho*(xGid2-nu(1)).*...
(yGid2-mu(2))/sigma(l)/sigma(2)));

time2 = toc;

% cal cul ate factor of performance inprovenent
factor = timel/tinme2;

% formatted out put

fprintf('\nSecond code is faster with factor %3.3f\n',factor);
%\n stands for change to new |ine
% 93.3f is the format for the ouput of the variable inserted

Second code is faster with factor 276.505
check for deviations of previous results
devi ations = [max(max(xGid-x&id2)),...

max(max(yG&id-yGid2)),...
max(max(z-z2))]

23

Introduction to MATLAB

devi ations =

0 0 0

Of course, the bivariate density function also existsin MATLAB.

% cal cul ate covariance matri x

covvar = [sigma(1l)”2 rho*sigma(1l)*sigma(2);
rho*si gnma(1)*sigma(2) sigma(2)"2];

% usi ng vectorized coordi nates as i nput
z3 = nvnpdf ([xGid(:) yGid(:)],m',covVar);

% reshape result to conparable size
z3 = reshape(z3,size(xGid));

Visualization is obtained by using either mesh() or surf().

mesh(xGid,yGid, z)

xl abel (['x axis: nean value " nunstr(nu(l1))])

ylabel (['y axis: nean value ' nun2str(nmu(2))])

title(' bivariate nornmal density')

%fit axes to grid points eval uated

set(gca, ' xLim ,[grid(1) grid(end)], " yLim,[grid(1l) grid(end)])

bivariate normal denzity

0+14______....~_...

012 T

Y axisi mean value 0 ¥ axist mean value 4

24

Introduction to MATLAB

String variables

String variables represent series of characters. In order to assign a string to a variable, the expression has
to be enclosed with apostrophes. Thisway, MATLAB automatically defines the variable's type as string.

s = "'This is a string!’

S =
This is a string!
Strings also can be packed into a matrix. However, a string in a matrix has to be interpreted as an array

of individual characters. Hence, in order to pack two strings into a matrix, the string dimensions have to
match the same way as the dimensions of row vectors have to match in a matrix with numeric entries.

s = ['"abc';'cha']

S =

abc
cba

Using strings of different lengths produces an error.
try

t = ['abc'; '"abcd']
catch err

err. message
end

ans =

Error using vertcat
CAT argunents di nmensions are not consistent.

Cell variables

Cdll arrays are used when variables of different types shall be stored in asingle variable. For example, an
entry in acell array can contain a numeric value as well as a matrix with numeric entries. Furthermore,
it can also obtain a string (an array of characters) or a structure variable. In contrast to the variable types
so far, cell arrays are initialized using curled brackets!

c = {'abe', "' kdkdkd'}
c{2,1} = 4535

X =[232, 122, 45 6];
c{2, 2} X

25

Introduction to MATLAB

c =
" abe' ' kdkdkd'
c =
" abe' ' kdkdkd'
[4535] [
c =
" abe' ' kdkdkd'
[4535] [3x3 doubl e]

Imagine, you wanted to store historic stock pricesin a cell array. Hence, you could fill one entry with a
string variable containing the name of the stock, one entry with amatrix of numeric values containing the
closing prices and one entry with a matrix containing associated dates. One problem when working with
cell arraysis, that you always have to keep track about the arrangement of the different variablesin the cell
array yourself! Thisway, your code becomes more error prone, since you could accidentially mix up the
entries, and overwrite the stock prices, while you only wanted to change the name of the stock. In order
to improve the code with respect to this danger of confusions, MATLAB has come up with away to store
different datatypes, wheretheindividual entries are not indexed with numbers, but with field names. Such
variables are called structure variables.

Structure variables

When using structure variables, individual fields are addressed by simple hame extensions to the name of
the variable. Consider a structure variabe stockl1 containing stock information.

stockl. nane = ' BMV;
stockl.dates = ['01.02.2001";'02.02.2001";"'03.02.2001'];
stockl.prices = [112; 114; 111];

st ockl

stockl =
nanme: ' BMW
dates: [3x10 char]
prices: [3x1 doubl e]

In order to display the information of a structure variable, one has to use asimilar syntax.

st ockl. dat es

26

Introduction to MATLAB

ans =
01.02. 2001
02. 02. 2001
03. 02. 2001
The same syntax a so has to be used when information of afield shall be assigned to anew variable.

dates = stockl. dates

dates =
01. 02. 2001

02. 02. 2001
03. 02. 2001

Published with MATLAB® 7.14

27

	Table of Contents
	
	Numeric variables
	Matrix Concatenation
	Matrix calculation
	Graphical output
	Functions
	For-loops and linearization
	String variables
	Cell variables
	Structure variables

