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Interest rates and returns

two broad types of investments:

fixed-income assets
payments are known in advance
only risk is risk of losses due to the failure of a counterparty to fulfill
its contractual obligations: called credit risk

speculative assets
characterized by random price movements
modelled in a stochastic framework using random variables
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Interest rates and returns Fixed-income assets

Interest and Compounding

given an interest rate of r per period and initial wealth Wt , the wealth
one period ahead is calculated as

Wt+1 = Wt (1 + r)

Example

r = 0.05 (annual rate), W0 = 500.000, after one year:

500.000
(
1 +

5
100

)
= 500.000 (1 + 0.05) = 525.000

compound interest in general:

WT (r ,W0) = W0(1 + r)T
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Interest rates and returns Fixed-income assets

Compounding at higher frequency

compounding can occur more frequently than at annual intervals
m times per year: Wm,t (r) denotes wealth in t for W0 = 1

biannually
after six months:

W2, 12
(r) =

(
1 +

r
2

)
after one year:

W2,1(r) =
(
1 +

r
2

)(
1 +

r
2

)
=
(
1 +

r
2

)2

the effective annual rate exceeds the simple annual rate:(
1 +

r
2

)2
> (1 + r)⇒W2,1 (r) > W1,1 (r)
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Interest rates and returns Fixed-income assets

Effective annual rate

m interest payments within a year
effective annual rate after one year:

Wm,1(r) :=
(
1 +

r
m

)m

after T years:

Wm,T (r) =
(
1 +

r
m

)mT

wealth is an increasing function of the interest payment frequency:

Wm1,t (r) > Wm2,t (r) , ∀t andm1 > m2
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Interest rates and returns Fixed-income assets

Continuous compounding

the continuously compounded rate is given by the limit

W∞,1 (r) = lim
m→∞

(
1 +

r
m

)m
= er

compounding over T periods leads to

W∞,T (r) = lim
m→∞

(
1 +

r
m

)mT
=
(

lim
m→∞

(
1 +

r
m

)m)T
= erT

under continous compounding the value of an initial investment of W0
grows exponentially fast
comparatively simple for calculation of interest accrued in between
dates of interest payments
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Interest rates and returns Fixed-income assets

Comparison of different interest rate frequencies

T m = 1 m = 2 m = 4 ∞
1 1030 1030.2 1030.3 1030.5
2 1060.9 1061.4 1061.6 1061.8
3 1092.7 1093.4 1093.8 1094.2
4 1125.5 1126.5 1127 1127.5
5 1159.3 1160.5 1161.2 1161.8
6 1194.1 1195.6 1196.4 1197.2
7 1229.9 1231.8 1232.7 1233.7
8 1266.8 1269 1270.1 1271.2
9 1304.8 1307.3 1308.6 1310
10 1343.9 1346.9 1348.3 1349.9

Table: Development of initial investment W0 = 1000 over 10 years, subject to
different interest rate frequencies, with annual interest rate r = 0.03
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Interest rates and returns Fixed-income assets

Non-constant interest rates

for the case of changing annual interest rates, end-of-period wealth
of annually compounded interest rates is given by

W1,t = (1 + r0) · (1 + r1) · ... · (1 + rt−1)

=
t−1∏
i=0

(1 + ri )

for continuously compounded interest rates, end-of-period wealth is
given by

W∞,t =
(

lim
m→∞

(
1 +

r0
m

)m)
· ... ·

(
lim

m→∞

(
1 +

rt−1

m

)m)
= er0 · er1 · ... · ert−1

= er0+...+rt−1

= exp

(
t−1∑
i=0

ri

)
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Interest rates and returns Fixed-income assets

Regarding continuous compounding

Why bother with continuous compounding, as interest rates in the
real world are always given at finite frequency?

→ the key to the answer of this question lies in the transformation of the
product of returns into a sum

as interest rates of fixed-income assets are assumed to be perfectly
known, summation instead of multiplication only yields minor
advantages in a world of computers
however, as soon as payments are uncertain and have to be modelled
as random variables, this transformation will make a huge difference
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Interest rates and returns Speculative assets

Returns on speculative assets

let Pt denote the price of a speculative asset at time t
net return during period t:

rt :=
Pt − Pt−1

Pt−1
=

Pt

Pt−1
− 1

gross return during period t:

Rt := (1 + rt) =
Pt

Pt−1

returns calculated this way are called discrete returns
returns on speculative assets vary from period to period
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Interest rates and returns Speculative assets

Calculating returns from prices

while interest rates of fixed-income assets are usually known prior to
the investment, returns of speculative assets have to be calculated
after observation of prices

discrete case

PT = P0 (1 + r)T ⇔ T

√
PT

P0
= 1 + r

⇒ r = T

√
PT

P0
− 1

Groll (Seminar für Finanzökonometrie) Slides for Risk Management Prof. Mittnik, PhD 12 / 100



Interest rates and returns Speculative assets

Continuously compounded returns

defining the log return, or continuously compounded return, by

r log
t := lnRt = ln (1 + rt) = ln

Pt

Pt−1
= lnPt − lnPt−1
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Interest rates and returns Speculative assets

Exercise

Investor A and investor B both made one investment each. While investor
A was able to increase his investment sum of 100 to 140 within 3 years,
investor B increased his initial wealth of 230 to 340 within 5 years. Which
investor did perform better?
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Interest rates and returns Speculative assets

Exercise: solution

calculate mean annual interest rate for both investors
investor A :

PT = P0 (1 + r)T ⇔
140 = 100 (1 + r)3 ⇔

3

√
140
100

= (1 + r) ⇔

rA = 0.1187

investor B :

rB =

(
5

√
340
230
− 1

)
= 0.0813

hence, investor A has achieved a higher return on his investment
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Interest rates and returns Speculative assets

Exercise: solution for continuous returns

for comparison, solution of the exercise with respect to continous
returns
continuously compounded returns associated with an evolution of
prices over a longer time period is given by

continuous case

PT = P0erT ⇔ PT

P0
= erT ⇔ ln

(
PT

P0

)
= ln

(
erT
)

= rT

r =
(lnPT − lnP0)

T
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Interest rates and returns Speculative assets

Exercise: solution for continuous returns

plugging in leads to

rA =
(ln 140− ln 100)

3
= 0.1121

rB =
(ln 340− ln 230)

5
= 0.0782

conclusion: while the case of discrete returns involves calculation of
the n-th root, the continuous case is computationally less demanding
while continuous returns differ from their discrete counterparts, the
ordering of both investors is unchanged
keep in mind: so far we only treat returns retrospectively, that is, with
given and known realization of prices, where any uncertainty
involved in asset price evolutions already has been resolved
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Interest rates and returns Speculative assets

Aggregating returns

compounded gross return over n + 1 sub-periods:

Rt,t+n := Rt · Rt+1 · Rt+2 · . . . · Rt+n

=
Pt

Pt−1
· Pt+1

Pt
· ... · Pt+n

Pt+n−1

=
Pt+n

Pt−1

Example

investment P0 = 100, net returns in percent [3,−2, 4, 3,−1] :

R0,4 = (1.03) (0.98) (1.04) (1.03) (0.99) = 1.075

P4 = 100 · 1.075 = 107.5

R0,4 =
P4

P0
=

107.5
100

= 1.075
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Interest rates and returns Speculative assets

Comparing different investments

comparison of returns of alternative investment opportunities over
different investment horizons requires computation of an “average”
gross return R̄ for each investment, fulfilling:

Pt R̄n !
= PtRt · . . . · Rt+n−1 = Pt+n

in net returns:

Pt (1 + r̄)n !
= Pt (1 + rt) · . . . · (1 + rt+n−1)

solving for r̄ leads to

r̄ =

(
n−1∏
i=0

(1 + rt+i )

)1/n

− 1

the annualized gross return is not an arithmetic mean, but a
geometric mean
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Interest rates and returns Speculative assets

Aggregating continuous returns

when aggregating log returns instead of discrete returns, we are
dealing with a sum rather than a product of sub-period returns:

r log
t,t+n := ln (1 + rt,t+n)

= ln [(1 + rt) (1 + rt+1) . . . (1 + rt+n)]

= ln (1 + rt) + ln (1 + rt+1) + . . .+ ln (1 + rt+n)

= r log
t + r log

t+1 + . . .+ r log
t+n
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Interest rates and returns Speculative assets

Example

The annualized return of 1.0392 is unequal to the simple arithmetic mean
over the randomly generated interest rates of 1.0395!

Left: randomly generated returns between 0 and 8 percent, plotted against
annualized net return rate. Right: comparison of associated compound
interest rates.
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Interest rates and returns Speculative assets

Example

two ways to calculate annualized net returns for previously generated
random returns:

direct way
using gross returns, taking 50-th root:

r̄ann
t,t+n−1 =

(
n−1∏
i=0

(1 + rt+i )

)1/n

− 1

= (1.0626 · 1.0555 · ... · 1.0734)1/50 − 1

= (6.8269)1/50 − 1
= 0.0391
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Interest rates and returns Speculative assets

via log returns
transfer the problem to the “logarithmic world”:

convert gross returns to log returns:

[1.0626, 1.0555, . . . , 1.0734]
log−→ [0.0607, 0.0540, . . . , 0.0708]

use arithmetic mean to calculate annualized return in the “logarithmic
world”:

r log
t,t+n−1 =

n−1∑
i=0

r log
t+i = (0.0607 + 0.0540 + ...+ 0.0708) = 1.9226

r̄ log
t,t+n−1 =

1
n
r log
t,t+n−1 =

1
50

1.9226 = 0.0385

convert result back to “normal world”:

r̄ann
t,t+n−1 = e r̄ log

t,t+n−1 − 1 = e0.0385 − 1 = 0.0391
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Interest rates and returns Speculative assets

Example

Note: given a constant one-period return, the multi-period return
increases linearly in the logarithmic world
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Interest rates and returns Speculative assets

Summary

multi-period gross returns result from multiplication of one-period
returns: hence, exponentially increasing
multi-period logarithmic returns result from summation of one-period
returns: hence, linearly increasing
different calculation of returns from given portfolio values:

rt =
Pt − Pt−1

Pt
r log
t = ln

(
Pt

Pt−1

)
= lnPt − lnPt−1

however, because of
ln (1 + x) ≈ x

discrete net returns and log returns are approximately equal:

r log
t = ln (Rt) = ln (1 + rt) ≈ rt
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Interest rates and returns Speculative assets

Conclusions for known price evolutions

given that prices / returns are already known, with no uncertainty
left, continuous returns are computationally more efficient
discrete returns can be calculated via a detour to continuous returns
as the transformation of discrete to continuous returns does not
change the ordering of investments, and as logarithmic returns are
still interpretable since they are the limiting case of discrete
compounding, why shouldn’t we just stick with continous returns
overall?
however: the main advantage only crops up in a setting of
uncertain future returns, and their modelling as random variables!
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Interest rates and returns Speculative assets

Outlook: returns under uncertainty

central limit theorem could justify modelling logarithmic returns as
normally distributed, since returns can be decomposed into
summation over returns of lower frequency: e.g. annual returns are
the sum of 12 monthly returns, 52 weakly returns, 365 daily returns,...
independent of the distribution of low frequency returns, the central
limit theorem states that any sum of these low frequency returns
follows a normal distribution, provided that the sum involves
sufficiently many summands, and the following requirements are
fulfilled:

the low frequency returns are independent of each other
the distribution of the low frequency returns allows finite second
moments (variance)
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Interest rates and returns Speculative assets

Outlook: returns under uncertainty

this reasoning does not apply to net / gross returns, since they
can not be decomposed into a sum of lower frequency returns
keep in mind: these are only hypothetical considerations, since we
have not seen any real world data so far!
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Probability theory Probability space and random variables

Randomness

Probability theory

randomness: the result is not known in advance
sample space Ω: set of all possible outcomes or elementary events
ω

examples for discrete sample space:

roulette: Ω1 = {red,black}
performance: Ω2 = {good,moderate,bad}
die: Ω3 = {1, 2, 3, 4, 5, 6}

examples for continuous sample space:

temperature: Ω4 = [−40, 50]
log-returns: Ω5 =]−∞,∞[
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Probability theory Probability space and random variables

Events

a subset A ⊂ Ω consisting of more than one elementary event ω is
called event

examples

“at least moderate performance”: A = {good,moderate} ⊂ Ω2

“even number”: A = {2, 4, 6} ⊂ Ω3

“warmer than 10 degrees”: A =]10,∞[⊂ Ω4

the set of all events of Ω is called event space F
usually it contains all possible subsets of Ω: it is the power set of
P (Ω)
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Probability theory Probability space and random variables

Events

event space example

P (Ω2) = {Ω, {}} ∪ {good} ∪ {moderate} ∪ {bad} ∪ {good,moderate} ∪
{good,bad} ∪ {moderate,bad}

{} denotes the empty set
an event A is said to occur if any ω ∈ A occurs

example

If the performance happens to be ω = {good} , then also the event A =“at
least moderate performance” has occured, since ω ⊂ A.
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Probability theory Probability space and random variables

Probability measure

probability measure
quantifies for each event a probability of occurance
real-valued set function P : F → R, with P (A) denoting the
probability of A, and properties

1 P (A) > 0 for all A ⊆ Ω
2 P (Ω) = 1
3 For each finite or countably infinite collection of disjoint events (Ai ) it

holds:
P (∪i∈IAi ) =

∑
i∈I

P (Ai )

Definition
The 3-tuple {Ω,F ,P} is called probability space.
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Probability theory Probability space and random variables

Random variable

instead of outcome ω itself, usually a mapping or function of ω is in
the focus: when playing roulette, instead of outcome “red” it is more
useful to consider associated gain or loss of a bet on “color”
conversion of categoral outcomes to real numbers allows for further
measurements / information extraction: expectation, dispersion,...

Definition
Let {Ω,F ,P} be a probability space. If X : Ω→ R is a real-valued function
with the elements of Ω as its domain, then X is called random variable.

a discrete random variable consists of a countable number of
elements, while a continuous random variable can take any real value
in a given interval
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Probability theory Probability space and random variables

Example
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Probability theory Probability space and random variables

Density function

a probability density function determines the probability (possibly
0) for each event

discrete density function

For each xi ∈ X (Ω) = {xi |xi = X (ω) , ω ∈ Ω}, the function

f (xi ) = P (X = xi )

assigns a value corresponding to the probability.

continuous density function

In contrast, the values of a continuous density function f (x) ,
x ∈ {x |x = X (ω) , ω ∈ Ω} are not probabilities itself. However, they shed
light on the relative probabilities of occurrence. Given f (y) = 2 · f (z) , the
occurrence of y is twice as probable as the occurrence of z .
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Probability theory Probability space and random variables

Example
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Probability theory Probability space and random variables

Cumulative distribution function

Definition
The cumulative distribution function (cdf) of random variable X ,
denoted by F (x) , indicates the probability that X assumes a value that is
lower than or equal to x , where x is any real number. That is

F (x) = P (X ≤ x) , −∞ < x <∞.

a cdf has the following properties:
1 F (x) is a nondecreasing function of x ;
2 limx→∞ F (x) = 1;
3 limx→−∞ F (x) = 0.

furthermore:

P (a < X ≤ b) = F (b)− F (a) , for all b > a
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Probability theory Probability space and random variables

Interrelation pdf and cdf

Discrete case:

F (x) = P (X ≤ x) =
∑
xi≤x

P (X = xi )
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Probability theory Probability space and random variables

Interrelation pdf and cdf

Continuous case:

F (x) = P (X ≤ x) =

ˆ x

−∞
f (u) du
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Probability theory Information reduction

Modelling information

both cdf as well as pdf, which is the derivative of the cdf, provide
complete information about the distribution of the random variable
may not always be necessary / possible to have complete distribution
incomplete information modelled via event space F
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Probability theory Information reduction

Example

sample space given by Ω = {1, 3, 5, 6, 7}
modelling complete information about possible realizations:

P (Ω) = {1} ∪ {3} ∪ {5} ∪ {6} ∪ {7}∪
∪ {1, 3} ∪ {1, 5} ∪ ... ∪ {6, 7} ∪ {1, 3, 5} ∪ ... ∪ {5, 6, 7}∪
∪ {1, 3, 5, 6} ∪ ... ∪ {3, 5, 6, 7} ∪ {Ω, {}}

example of event space representing incomplete information could be

F = {{1, 3} , {5} , {6, 7}} ∪ {{1, 3, 5} , {1, 3, 6, 7} , {5, 6, 7}} ∪ {Ω, {}}

given only incomplete information, originally distinct distributions can
become indistinguishable
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Probability theory Information reduction

Information reduction discrete
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Probability theory Information reduction

Information reduction discrete
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Probability theory Information reduction

Information reduction continuous
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Probability theory Information reduction

Measures of random variables

complete distribution may not always be necessary
classification with respect to several measures can be sufficient:

probability of negative / positive return
return on average
worst case

compress information of complete distribution for better comparability
with other distributions
compressed information is easier to interpret
example: knowing “central location” together with an idea by how
much X may fluctuate around the center may be sufficient
measures of location and dispersion
given only incomplete information conveyed by measures, distinct
distributions can become indistinguishable
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Probability theory Information reduction

Expectation

The expectation, or mean, is defined as a weighted average of all possible
realizations of a random variable.

discrete random variables
The expected value E [X ] is defined as

E [X ] = µX =
N∑

i=1

xiP (X = xi ) .

continuous random variables
For a continuous random variable with density function f (x) :

E [X ] = µX =

ˆ ∞
−∞

xf (x) dx
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Probability theory Information reduction

Example

E [X ] =
5∑

i=1

xiP (X = xi )

= 1 · 0.1 + 3 · 0.2 + 5 · 0.6 + 6 · 0.06 + 7 · 0.04 = 4.34
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Probability theory Information reduction

Example

E [X ] = −2 · 0.1− 1 · 0.2 + 7 · 0.6 + 8 · 0.06 + 9 · 0.0067 = 4.34
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Probability theory Information reduction

Variance

The variance provides a measure of dispersion around the mean.

discrete random variables
The variance is defined by

V [X ] = σ2
X =

N∑
i=1

(Xi − µX )2 P (X = xi ) ,

where σX =
√

V [X ] denotes the standard deviation of X .

continuous random variables
For continuous variables, the variance is defined by

V [X ] = σ2
X =

ˆ ∞
−∞

(x − µX )2 f (x) dx

Groll (Seminar für Finanzökonometrie) Slides for Risk Management Prof. Mittnik, PhD 49 / 100



Example

V [X ] =
5∑

i=1

(xi − µ)2 P (X = xi )

= 3.342 · 0.1 + 1.342 · 0.2 + 0.662 · 0.6 + 1.662 · 0.06 + 2.662 · 0.04
= 2.1844 6= 14.913



Probability theory Information reduction

Quantiles

Quantile
Let X be a random variable with cumulative distribution function F . For
each p ∈ (0, 1), the p-quantile is defined as

F−1 (p) = inf {x |F (x) ≥ p} .

measure of location
divides distribution in two parts, with exactly p ∗ 100 percent of the
probability mass of the distribution to the left in the continuous
case: random draws from the given distribution F would fall p ∗ 100
percent of the time below the p-quantile
for discrete distributions, the probability mass on the left has to be at
least p ∗ 100 percent:

F
(
F−1 (p)

)
= P

(
X ≤ F−1 (p)

)
≥ p
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Probability theory Information reduction

Example
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Probability theory Information reduction

Example: cdf
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Probability theory Information reduction

Example
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Probability theory Information reduction

Example
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Probability theory Information reduction

Information reduction / updating

summary: information reduction
incomplete information can occur in two ways:

a coarse filtration
only values of some measures of the underlying distribution are known
(mean, dispersion, quantiles)

any reduction of information implicitly induces that some formerly
distinguishable distributions are undistinguishable on the basis of the
limited information
tradeoff: reducing information for better comprehensibility /
comparability, or keeping as much information as possible

opposite direction: updating information on the basis of new arriving
information
concept of conditional probability
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Probability theory Updating information

Example

with knowledge of the underlying distribution, the information has to
be updated, given that the occurrence of some event of the filtration
is known
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Probability theory Updating information

Conditional density

normal distribution with mean 2
incorporating the knowledge of a realization greater than the mean
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Probability theory Updating information

Conditional density

given the knowledge of a realization higher than 2, probabilities of
values below become zero
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Probability theory Updating information

Conditional density

without changing relative proportions, the density has to be rescaled in
order to enclose an area of 1
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Probability theory Updating information

Conditional density

original density function compared to updated conditional density
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Probability theory Updating information

Decompose density
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Probability theory Updating information

Decompose density
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Decompose density
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Probability theory Updating information

Decompose density
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Probability theory Functions of random variables

Functions of random variables: example
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Probability theory Functions of random variables
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Probability theory Functions of random variables
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Probability theory Functions of random variables

Example: call option
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Probability theory Functions of random variables
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Probability theory Functions of random variables
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Probability theory Functions of random variables

Analytical formula

transformation theorem
Let X be a random variable with density function f (x) , and g (x) be an
invertible bijective function. Then the density function of the
transformed random variable Y = g (X ) in any point z is given by

fY (z) = fX
(
g−1 (z)

)
·
∣∣∣(g−1)′ (z)

∣∣∣ .
problems:

given that we can calculate a measure %X of the random variable X , it
is not ensured that %Y can be calculated for the new random variable
Y , too: e.g. if % envolves integration
what about non-invertible functions?
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Probability theory Functions of random variables
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Probability theory Functions of random variables
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Probability theory Functions of random variables

Analytical solution

Traditional financial modelling assumes logarithmic returns to be
distributed according to a normal distribution, so that, for example,
100 · r log is modelled by R log := 100 · r log ∼ N (1, 1) .

given a percentage logarithmic return R log , the net return we
observe in the real world can be calculated as a function of R log by

r = eR log/100 − 1

hence, the associated distribution of the net return has to be
calculated according to the transformation theorem:

fr (z) = fR log
(
g−1 (z)

)
·
∣∣∣(g−1)′ (z)

∣∣∣
with transformation function g (x) = ex/100 − 1
calculate each part
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Probability theory Functions of random variables

calculation of g−1 :

x = ey/100 − 1⇔
x + 1 = ey/100 ⇔

log (x + 1) = y/100 ⇔
100 · log (x + 1) = y

calculation of the derivative
(
g−1)′ of the inverse of g−1 :

(100 · log (x + 1))
′

= 100 · 1
x + 1

plugging in leads to:

fr (z) = fR log (100 · log (z + 1)) ·
∣∣∣∣ 100z + 1

∣∣∣∣
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Probability theory Functions of random variables

although only visable under some magnification, there is a difference
between a normal distribution which is directly fitted to the net
returns and the distribution which arises for the net returns by fitting a
normal distribution to the logarithmic returns

Groll (Seminar für Finanzökonometrie) Slides for Risk Management Prof. Mittnik, PhD 82 / 100



Probability theory Functions of random variables

Comparison of tails

magnification of the tail behavior shows that the resulting distribution
from fitting a normal distribution to the logarithmic returns assigns
more probability to extreme negative returns as well as less probability
to extreme positive returns
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Probability theory Monte Carlo Simulation

example: application of an inverse normal cumulative distribution as
transformation function to a uniformly distributed random variable
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Probability theory Monte Carlo Simulation

Monte Carlo Simulation

the resulting density function of the transformed random variable
seems to resemble a normal distribution
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Probability theory Monte Carlo Simulation

Monte Carlo Simulation

a more detailed comparison shows: the resulting approximation has
the shape of the normal distribution with the exact same parameters
that have been used for the inverse cdf as transformation function
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Probability theory Monte Carlo Simulation

Monte Carlo Simulation

Proposition
Let X be a univariate random variable with distribution function FX . Let
F−1

X be the quantile function of FX , i.e.

F−1
X (p) = inf {x |FX (x) ≥ p} , p ∈ (0, 1) .

Then for any standard-uniformly distributed U ∼ U [0, 1] we have
F−1

X (U) ∼ FX . This gives a simple method for simulating random variables
with arbitrary distribution function F .
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Probability theory Monte Carlo Simulation

Proof

Proof.
Let X be a continuous random variable with cumulative distribution
function FX , and let Y denote the transformed random variable
Y := F−1

X (U) . Then

FY (x) = P (Y ≤ x) = P
(
F−1

X (U) ≤ x
)

= P (U ≤ FX (x)) = FX (x)

so that Y has the same distribution function as X .
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Probability theory Measures under transformation

Linear transformation functions

a one-dimensional linear transformation function is given by

g (x) = ax + b

examples of linear functions:
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Probability theory Measures under transformation

Effect on measures

determine effects of linear transformation on measures derived from
the distribution function
example: given X ∼ N (2, 4) , calculate mean and variance of
Y := g (X ) = 3X − 2 via Monte Carlo Simulation

simulate 10,000 uniformly distributed random numbers
transform uniformly distributed numbers via inverse of N (2, 4) into
N (2, 4)-distributed random numbers
apply linear function g (x) = 3x − 2 on each number
calculate sample mean and sample variance
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Probability theory Measures under transformation

Matlab code

1 U = rand (10000 ,1);
2 returns = norminv(U,2,2);
3 transformedReturns = 3*returns -2;
4 sampleMean = mean(transformedReturns);
5 sampleVariance = var(transformedReturns);
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Probability theory Measures under transformation

Solution

µ̂ = 4.0253, σ̂2 = 36.1843⇔ σ̂ = 6.0153

Groll (Seminar für Finanzökonometrie) Slides for Risk Management Prof. Mittnik, PhD 91 / 100



Probability theory Measures under transformation

Analytical solution: general case

calculate inverse g−1 :

x = ay + b ⇔ x − b = ay ⇔ x
a
− b

a
= y

calculate derivative
(
g−1)′ :(

x
a
− b

a

)′
=

1
a

putting together gives:

fg(X ) (z) = fX
(
g−1 (z)

)
·
∣∣∣(g−1)′∣∣∣ = fX

(
z
a
− b

a

)
·
∣∣∣∣1a
∣∣∣∣

interpretation: stretching by factor a, shifting b units to the right
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Probability theory Measures under transformation

Effect on expectation

stretching and shifting the distribution also directly translates into
the formula for the expectation of a linearly transformed random
variable Y := aX + b:

E [Y ] = E [aX + b] = aE [X ] + b

possible application: given expectation E [X ] of stock return, find
expected wealth when investing initial wealth W0 and subtracting the
fixed transaction costs c
hence, focus on linearly transformed random variable

E [Y ] = E [W0 · X − c] ,

calculated by
W0E [X ]− c
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Probability theory Measures under transformation

Effect on variance

using the formula for the expectation, the effect of a linear
transformation on the variance

V [Y ] = E
[
(Y − E [Y ])2

]
of the random variable can be calculated by

V [aX + b] = E
[
(aX + b − E [aX + b])2

]
= E

[
(aX + b − aE [X ]− b)2

]
= E

[
(a (X − E [X ]) + b − b)2

]
= a2E

[
(X − E [X ])2

]
= a2V [X ]
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Probability theory Measures under transformation

note: calculation of mean and variance of a linearly transformed
variable neither requires detailed information about the distribution of
the original random variable, nor about the distribution of the
transformed random variable
knowledge of the respective values of the original distribution is
sufficient
the analytically computated values for expectation and variance of the
example amount to

E [3X − 2] = 3E [X ]− 2 = 3 · 2− 2 = 4

V [3X − 2] = 32V [X ] = 9 · σ2
X = 9 · 22 = 36

for non-linear transformations, such simple formulas do not exist
most situations require simulation of the transformed random variable
and subsequent calculation of the sample value of a given measure
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Probability theory Measures under transformation

Summary / outlook

given random variable X of arbitrary distribution FX , associated
values E [X ] and V (X ), and a linear transformation Y = f (X ), we
can also get E [Y ] and V (X ) very simple
modelling practices: taking hypothetical considerations as given,
continuous returns are modelled as normally distributed
consequences:

E [X ] and V (X ) are easily obtainable
since discrete real world returns are non-linear transformation of
log-returns, E and V are not trivially obtained here
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Probability theory Measures under transformation

1 U = rand (10000 ,1); % generate uniformly distributed RV
2 t = tinv(U,3); % transform to t-distributed values
3

4 % transform to net returns
5 netRets = (exp(t/100) -1)*100;
6

7 % transform net returns via butterfly option payoff
function:

8 payoff = subplus(netRets +2) -2*subplus(netRets)+subplus(
netRets -2);

9

10 % calculate 95 percent quantile:
11 value = quantile(payoff ,0.95)
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Probability theory Measures under transformation

Example
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Probability theory Measures under transformation
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Probability theory Measures under transformation

payoff profile butterfly option
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Probability theory Measures under transformation

expected payoff approximated via Monte Carlo simulation: 1.9305
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