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Risk measures Introduction

Notation

risk often is defined as negative deviation of a given target payoff
riskmanagement is mainly concerned with downsiderisk
convention: focus on the distribution of losses instead of profits
for prices denoted by Pt , the random variable quantifying losses is
given by

Lt+1 = − (Pt+1 − Pt)

distribution of losses equals distribution of profits flipped at x-axis
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Risk measures Introduction

From profits to losses
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Risk measures Introduction

Quantification of risk

decisions concerned with managing, mitigating or hedging of risks
have to be based on quantification of risk as basis of
decision-making:

regulatory purposes: capital buffer proportional to exposure to risk
interior management decisions: freedom of daily traders restricted by
capping allowed risk level
corporate management: identification of key risk factors (comparability)

information contained in loss distribution is mapped to scalar value:
information reduction

Groll (Seminar für Finanzökonometrie) Slides for Risk Management Prof. Mittnik, PhD 5 / 133



Risk measures Introduction

Decomposing risk

You are casino owner.
1 You only have one table of roulette, with one gambler, who bets 100

€ on number 12. He only plays one game, and while the odds of
winning are 1:36, his payment in case of success will be 3500 only.
With expected positive payoff, what is your risk? ⇒ completely
computable

2 Now assume that you have multiple gamblers per day. Although you
have a pretty good record of the number of gamblers over the last
year, you still have to make an estimate about the number of visitors
today. What is your risk? ⇒ additional risk due to estimation error

3 You have been owner of The Mirage Casino in Las Vegas. What was
your biggest loss within the last years?
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Risk measures Introduction

Decomposing risk

the closing of the show of Siegfried and Roy due to the attack of a
tiger led to losses of hundreds of millions of dollars ⇒ model risk
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Risk measures Introduction

Risk measurement frameworks

notional-amount approach: weighted nominal value

nominal value as substitute for outstanding amount at risk
weighting factor representing riskiness of associated asset class as
substitute for riskiness of individual asset
component of standardized approach of Basel capital adequacy
framework
advantage: no individual risk assessment necessary - applicable even
without empirical data
weakness: diversification benefits and netting unconsidered, strong
simplification
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Risk measures Introduction

Risk measurement frameworks

scenario analysis:
define possible future economic scenarios (stock market crash of -20
percent in major economies, default of Greece government securities,...)
derive associated losses
determine risk as specified quantile of scenario losses (5th largest loss,
worst loss, protection against at least 90 percent of scenarios,...)
since scenarios are not accompanied by statements about likelihood of
occurrence, probability dimension is completely left unconsidered
scenario analysis can be conducted without any empirical data on the
sole grounds of expert knowledge
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Risk measures Introduction

Risk measurement frameworks

risk measures based on loss distribution: statistical quantities of
asset value distribution function

loss distribution

incorporates all information about both probability and magnitude of
losses
includes diversification and netting effects
usually relies on empirical data

full information of distribution function reduced to charateristics of
distribution for better comprehensibility
examples: standard deviation, Value-at-Risk, Expected Shortfall, Lower
Partial Moments
standard deviation: symmetrically capturing positive and negative
risks dilutes information about downsiderisk
overall loss distribution inpracticable: approximate risk measure of
overall loss distribution by aggregation of asset subgroup risk
measures
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Risk measures Value-at-Risk

Value-at-Risk

Value-at-Risk
The Value-at-Risk (VaR) at the confidence level α associated with a
given loss distribution L is defined as the smallest value l that is not
exceeded with probability higher than (1− α). That is,

VaRα = inf {l ∈ R : P (L > l) ≤ 1− α} = inf {l ∈ R : FL (l) ≥ α} .

typical values for α : α = 0.95, α = 0.99 or α = 0.999
as a measure of location, VaR does not provide any information
about the nature of losses beyond the VaR
the losses incurred by investments held on a daily basis exceed the
value given by VaRα only in (1− α) · 100 percent of days
financial entity is protected in at least α-percent of days

Groll (Seminar für Finanzökonometrie) Slides for Risk Management Prof. Mittnik, PhD 11 / 133



Risk measures Value-at-Risk

Loss distribution known
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Risk measures Value-at-Risk

Loss distribution known
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Risk measures Value-at-Risk

Loss distribution known
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Risk measures Value-at-Risk

Estimation frameworks

in general: underlying loss distribution is not known
two estimation methods for VaR:

directly estimate the associated quantile of historical data
estimate model for underlying loss distribution, and evaluate inverse
cdf at required quantile

derivation of VaR from a model for the loss distribution can be further
decomposed:

analytical solution for quantile
Monte Carlo Simulation when analytic formulas are not available

modelling the loss distribution inevitably entails model risk, which is
concerned with possibly misleading results due to model
misspecifications
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Risk measures Value-at-Risk

Properties of historical simulation

simulation study: examine properties of estimated sample quantiles
assume t-distributed loss distribution with degrees-of-freedom
parameter ν = 3 and mean shifted by −0.004 :

VaR0.99 = 4.54
VaR0.995 = 5.84
VaR0.999 = 10.22

estimate VaR for 100000 simulated samples of size 2500
(approximately 10 years in trading days)
compare distribution of estimated VaR values with real value of
applied underlying loss distribution
even with sample size 2500, only 2.5 values occur above the 0.999
quantile on average ⇒ high mean squared errors (mse)
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Risk measures Value-at-Risk
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Risk measures Value-at-Risk

Distribution of estimated values
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Risk measures Value-at-Risk

Modelling the loss distribution

introductory model: assume normally distributed loss distribution

VaR normal distribution
For given parameters µL and σ VaRα can be calculated analytically by

VaRα = µL + σΦ−1 (α) .

Proof.

P (L ≤ VaRα) = P
(
L ≤ µL + σΦ−1 (α)

)
= P

(
L− µL

σ
≤ Φ−1 (α)

)
= Φ

(
Φ−1 (α)

)
= α
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Risk measures Value-at-Risk

Remarks

note: µL in
VaRα = µL + σΦ−1 (α)

is the expectation of the loss distribution
if µ denotes the expectation of the asset return, i.e. the expectation of
the profit, then the formula has to be modified to

VaRα = −µ+ σΦ−1 (α)

in practice, the assumption of normally distributed returns usually
can be rejected both for loss distributions associated with credit and
operational risk, as well as for loss distributions associated with market
risk at high levels of confidence
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Risk measures Expected Shortfall

Expected Shortfall

Definition
The Expected Shortfall (ES) with confidence level α denotes the
conditional expected loss, given that the realized loss is equal to or
exceeds the corresponding value of VaRα :

ESα = E [L|L ≥ VaRα] .

given that we are in one of the (1− α) · 100 percent worst periods,
how high is the loss that we have to expect?
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Risk measures Expected Shortfall

Expected Shortfall

Expected Shortfall as expectation of conditional loss distribution:
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Risk measures Expected Shortfall

Additional information of ES

ES contains information about nature of losses beyond the VaR :
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Risk measures Expected Shortfall

Estimation frameworks

in general: underlying loss distribution is not known
two estimation methods for ES:

directly estimate the mean of all values greater than the associated
quantile of historical data
estimate model for underlying loss distribution, and calculate
expectation of conditional loss distribution

derivation of ES from a model for the loss distribution can be further
decomposed:

analytical calculation of quantile and expectation: involves
integration
Monte Carlo Simulation when analytic formulas are not available
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Risk measures Expected Shortfall

Properties of historical simulation

high mean squared errors (mse) for Expected Shortfall at high
confidence levels:
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Risk measures Expected Shortfall

ES under normal distribution

ES for normally distributed losses

Given that L ∼ N
(
µL, σ

2) , the Expected Shortfall of L is given by

ESα = µL + σ
φ
(
Φ−1 (α)

)
1− α

.
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Risk measures Expected Shortfall

Proof

ESα = E [L|L ≥ VaRα]

= E
[
L|L ≥ µL + σΦ−1 (α)

]
= E

[
L|L− µL

σ
≥ Φ−1 (α)

]
= µL − µL + E

[
L|L− µL

σ
≥ Φ−1 (α)

]
= µL + E

[
L− µL|

L− µL

σ
≥ Φ−1 (α)

]
= µL + σE

[
L− µL

σ
|L− µL

σ
≥ Φ−1 (α)

]
= µL + σE

[
Y |Y ≥ Φ−1 (α)

]
, with Y ∼ N (0, 1)

Groll (Seminar für Finanzökonometrie) Slides for Risk Management Prof. Mittnik, PhD 27 / 133



Risk measures Expected Shortfall

Proof

Furthermore,

P
(
Y ≥ Φ−1 (α)

)
= 1− P

(
Y ≤ Φ−1 (α)

)
= 1− Φ

(
Φ−1 (α)

)
= 1− α,

so that the conditional density as the scaled version of the standard normal
density function is given by

φY |Y≥Φ−1(α) (y) =
φ (y) 1{y≥Φ−1(α)}

P (Y ≥ Φ−1 (α))

=
φ (y) 1{y≥Φ−1(α)}

1− α
.
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Risk measures Expected Shortfall

Proof

Hence, the integral can be calculated as

E
[
Y |Y ≥ Φ−1 (α)

]
=

ˆ ∞
Φ−1(α)

y · φY |Y≥Φ−1(α) (y) dy

=

ˆ ∞
Φ−1(α)

y · φ (y)

1− αdy

=
1

1− α

ˆ ∞
Φ−1(α)

y · φ (y) dy

(?)
=

1
1− α [−φ (y)]∞Φ−1(α)

=
1

1− α
(
0 + φ

(
Φ−1 (α)

))
=
φ
(
Φ−1 (α)

)
1− α ,

with (?) :

(−φ (y))
′

= − 1√
2π

exp
(
−y2

2

)
·
(
−2y

2

)
= y · φ (y)
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Risk measures Expected Shortfall

Example: Meaning of VaR

You have invested 500,000 € in an investment fonds. The manager of the
fonds tells you that the 99% Value-at-Risk for a time horizon of one year
amounts to 5% of the portfolio value. Explain the information conveyed by
this statement.
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Risk measures Expected Shortfall

Solution

for continuous loss distribution we have equality

P (L ≥ VaRα) = 1− α

transform relative statement about losses into absolute quantity

VaRα = 0.05 · 500, 000 = 25, 000

pluggin into formula leads to

P (L ≥ 25, 000) = 0.01,

interpretable as ”with probability 1% you will lose 25,000 € or more”
a capital cushion of height VaR0.99 = 25000 is sufficient in exactly
99% of the times for continuous distributions
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Risk measures Expected Shortfall

Example: discrete case

example possible discrete loss distribution:

the capital cushion provided by VaRα would be sufficient even in
99.3% of the times
interpretation of statement: “with probability of maximal 1% you
will lose 25,000 € or more”
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Risk measures Expected Shortfall

Example: Meaning of ES

The fondsmanager corrects himself. Instead of the Value-at-Risk, it is the
Expected Shortfall that amounts to 5% of the portfolio value. How does
this statement have to be interpreted? Which of both cases does imply the
riskier portfolio?
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Risk measures Expected Shortfall

Solution

given that one of the 1% worst years occurs, the expected loss in this
year will amount to 25,000 €
since always VaRα ≤ ESα, the first statement implies ESα ≥ 25, 000
€ ⇒ the first statement implies the riskier portfolio
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Risk measures Expected Shortfall

Example: market risk

estimating VaR for DAX
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Risk measures Expected Shortfall

Groll (Seminar für Finanzökonometrie) Slides for Risk Management Prof. Mittnik, PhD 36 / 133



Risk measures Expected Shortfall
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Risk measures Expected Shortfall

Empirical distribution
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Risk measures Expected Shortfall

Historical simulation

VaR0.99 = 4.5380, VaR0.995 = 5.3771, VaR0.999 = 6.4180
ES0.99 = 5.4711, ES0.995 = 6.0085, ES0.999 = 6.5761
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Risk measures Expected Shortfall

Historical simulation
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Risk measures Expected Shortfall

Under normal distribution

given estimated expectation for daily index returns, calculate
estimated expected loss

µ̂L = −µ̂

plugging estimated parameter values of normally distributed losses into
formula

VaRα = µL + σΦ−1 (α) ,

for α = 99% we get

V̂aR0.99 = µ̂L + σ̂Φ−1 (0.99)

= −0.0344 + 1.5403 · 2.3263 = 3.5489

for VaR0.995 we get

V̂aR0.995 = −0.0344 + 1.5403 · 2.5758 = 3.9331
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Risk measures Expected Shortfall

for Expected Shortfall, using

ESα = µL + σ
φ
(
Φ−1 (α)

)
1− α

,

we get

ÊS0.99 = −0.0344 + 1.5403 ·
φ
(
Φ−1 (0.99)

)
0.01

= −0.0344 + 1.5403 · φ (2.3263)

0.01

= −0.0344 + 1.5403 · 0.0267
0.01

= 4.0782,

and

ÊS0.995 = −0.0344 + 1.5403 · φ (2.5758)

0.005

= −0.0344 + 1.5403 · 0.0145
0.005

= 4.4325.
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Risk measures Model risk

Performance: backtesting

how good did VaR-calculations with normally distributed returns
perform?
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Risk measures Model risk

Backtesting: interpretation

backtesting VaR-calculations based on assumption of independent
normally distributed losses generally leads to two patterns:

percentage frequencies of VaR-exceedances are higher than the
confidence levels specified: normal distribution assigns too less
probability to large losses
VaR-exceedances occur in clusters: given an exceedance of VaR today,
the likelihood of an additional exceedance in the days following is larger
than average
clustered exceedances indicate violation of independence of losses
over time
clusters have to be captured through time series models
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Risk measures Model risk

Model risk

given that returns in the real world were indeed generated by an
underlying normal distribution, we could determine the risk inherent to
the investment up to a small error arising from estimation errors
however, returns of the real world are not normally distributed
in addition to the risk deduced from the model, the model itself could
be significantly different to the processes of the real world that are
under consideration
the risk of deviations of the specified model from the real world is
called model risk
the results of the backtesting procedure indicate substantial model
risk involved in the framework of assumed normally distributed
losses
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Risk measures Model risk

Appropriateness of normal distribution
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Risk measures Model risk

Appropriateness of normal distribution

Groll (Seminar für Finanzökonometrie) Slides for Risk Management Prof. Mittnik, PhD 47 / 133



Risk measures Model risk

Appropriateness of normal distribution
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Risk measures Model risk

Student’s t-distribution
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Risk measures Model risk

Student’s t-distribution

Groll (Seminar für Finanzökonometrie) Slides for Risk Management Prof. Mittnik, PhD 50 / 133



Risk measures Model risk

Student’s t-distribution

note: clusters in VaR-exceedances remain
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Risk measures Model risk

Comparing values

VaR 0.99 0.995 0.999
historical values 4.5380 5.3771 6.4180

normal assumption 3.5490 3.9333 4.7256
Student’s t assumption 4.2302 5.2821 8.5283

ES 0.99 0.995 0.999
historical values 5.4711 6.0085 6.5761

normal assumption 4.0782 4.4325 5.1519
Student’s t assumption 6.0866 7.4914 11.9183
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Risk measures Model risk

Comparing number of hits

sample size: 2779 VaR0.99 VaR0.995 VaR0.999

historical values 28 14 3
frequency 0.01 0.005 0.001

normal assumption 57 44 24
frequency 0.0205 0.0158 0.0086

Student’s t assumption 36 16 0
frequency 0.0130 0.0058 0

note: exceedance frequencies for historical simulation equal predefined
confidence level per definition →overfitting
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Risk measures Model risk

Model risk

besides sophisticated modelling approaches, even Deutsche Bank
seems to fail at VaR-estimation: VaR0.99
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Risk measures Model risk

Model risk
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Risk measures Model risk

Model risk
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Risk measures Multi-period / multi-asset case

given only information about VaRA
α of random variable A and VaRB

α of
random variable B , there is in general no sufficient information to
calculate VaR for a function of both:

VaR f (A,B)
α 6= g

(
VaRA

α ,VaR
B
α

)
in such cases, in order to calculate VaR f (A,B)

α , we have to derive the
distribution of f (A,B) first
despite the marginal distributions of the constituting parts, the
transformed distribution under f is affected by the way that the
margins are related with each other: the dependence structure
between individual assets is crucial to the determination of VaR f (A,B)

α
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Risk measures Multi-period / multi-asset case

Multi-period case

as multi-period returns can be calculated as simple sum of
sub-period returns in the logarithmic case, we aim to model

VaR f (A,B)
α = VaRA+B

α

even though our object of interest relates to a simple sum of random
variables, easy analytical solutions apply only in the very restricted
cases where summation preserves the distribution: A, B and A + B
have to be of the same distribution
this property is fulfilled for the case of jointly normally distributed
random variables
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Risk measures Multi-period / multi-asset case

Multi-asset case

while portfolio returns can be calculated as weighted sum of
individual assets for discrete returns, such an easy relation does not
exist for the case of logarithmic returns
discrete case:

rP = w1r1 + w2r2

logarithmic case:

r log
P = ln (1 + rP)

= ln (1 + w1r1 + w2r2)

= ln (1 + w1 [exp (ln (1 + r1))− 1] + w2 [exp (ln (1 + r2))− 1])

= ln
(
w1 exp

(
r log
1

)
+ w2 exp

(
r log
2

))
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Multi-period VaR and ES Excursion: Joint distributions

Origins of dependency

direct influence:
smoking → health
recession → probabilities of default
both directions: wealth ↔ education

common underlying influence:
gender → income, shoe size
economic fundamentals → BMW, Daimler
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Multi-period VaR and ES Excursion: Joint distributions

Independence

two random variables X and Y are called stochastically
independent if

P (X = x ,Y = y) = P (X = x) · P (Y = y)

for all x , y
the occurrence of one event makes it neither more nor less probable
that the other occurs:

P (X = x |Y = y) =
P (X = x ,Y = y)

P (Y = y)

indep.
=

P (X = x) · P (Y = y)

P (Y = y)

= P (X = x)

knowledge of the realization of Y does not provide additional
information about the distribution of X
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Multi-period VaR and ES Excursion: Joint distributions

Example: independent dice

because of independency, joint probability is given by product:

P (X = 5,Y = 4)
indep.

= P (X = 5) · P (Y = 4) =
1
6
· 1
6

=
1
36

joint distribution given by

P (X = i ,Y = j)
indep.

= P (X = i) · P (Y = j) =
1
6
· 1
6

=
1
36
,

for all i , j ∈ {1, . . . , 6}
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Multi-period VaR and ES Excursion: Joint distributions

Example: independent dice

because of independency, realization of die 1 does not provide
additional information about occurrence of die 2:

P (X = x |Y = 5)
indep.

= P (X = x)

conditional distribution: relative distribution of probabilities (red
row) has to be scaled up
unconditional distribution of die 2 is equal to the conditional
distribution given die 1
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Multi-period VaR and ES Excursion: Joint distributions

Example: unconditional distribution

given the joint distribution, the unconditional marginal probabilities
are given by

P (X = x) =
6∑

i=1

P (X = x ,Y = i)

marginal distributions hence are obtained by summation along the
appropriate direction:
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Multi-period VaR and ES Excursion: Joint distributions

Example: independent firms

firms A and B , both with possible performances good, moderate and
bad
each performance occurs with equal probability 1

3

joint distribution for the case of independency:

Groll (Seminar für Finanzökonometrie) Slides for Risk Management Prof. Mittnik, PhD 65 / 133



Multi-period VaR and ES Excursion: Joint distributions

Example: dependent firms

firm A costumer of firm B : demand for good of firm B depending on
financial condition of A
good financial condition A → high demand → high income for B →
increased likelihood of good financial condition of firm B :

fA = 1
3δ{a=good} + 1

3δ{a=mod.} + 1
3δ{a=bad}

fB = 1
2δ{b=a} + 1

4δ{b=good}1{a 6=good} + 1
4δ{b=mod.}1{a 6=mod.} +

1
4δ{b=bad}1{a 6=bad}
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Multi-period VaR and ES Excursion: Joint distributions

Example: common influence

firm A and firm B supplier of firm C : demand for goods of firm A
and B depending on financial condition of C :

fC = 1
3δ{c=good} + 1

3δ{c=mod.} + 1
3δ{c=bad}

fA = 3
4δ{a=c} + 1

8δ{a=good}1{c 6=good} + 1
8δ{a=mod.}1{c 6=mod.} +

1
8δ{a=bad}1{c 6=bad}
fB = 3

4δ{b=c} + 1
8δ{b=good}1{c 6=good} + 1

8δ{b=mod.}1{c 6=mod.} +
1
8δ{b=bad}1{c 6=bad}
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Multi-period VaR and ES Excursion: Joint distributions

Example: common influence

get common distribution of firm A and B :

P (A = g ,B = g) = P (A = g ,B = g |C = g)

+ P (A = g ,B = g |C = m) + P (A = g ,B = g |C = b)

=
3
4
· 3
4
· 1
3

+
1
8
· 1
8
· 1
3

+
1
8
· 1
8
· 1
3

=
19
68

P (A = g ,B = m) = P (A = g ,B = m|C = g)

+ P (A = g ,B = m|C = m) + P (A = g ,B = m|C = b)

=
3
4
· 1
8
· 1
3

+
1
8
· 3
4
· 1
3

+
1
8
· 1
8
· 1
3

=
13
192
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Multi-period VaR and ES Excursion: Joint distributions

Example: asymmetric dependency

two competitive firms with common economic fundamentals:
in times of bad economic conditions: both firms tend to perform bad
in times of good economic conditions: due to competition, a
prospering competitor most likely comes at the expense of other firms
in the sector

dependence during bad economic conditions stronger than in times
of booming market
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Multi-period VaR and ES Excursion: Joint distributions

Empirical
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Multi-period VaR and ES Excursion: Joint distributions

Bivariate normal distribution

f (x , y) = 1
2πσXσY

√
1−ρ2

· exp
(
− 1

2(1−ρ2)

[
(x−µX )2

σ2
X

+ (y−µY )2

σ2
Y
− 2ρ(x−µX )(y−µY )

σXσY

])
ρ = 0.2 :
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Multi-period VaR and ES Excursion: Joint distributions

Bivariate normal distribution

ρ = 0.8 :
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Multi-period VaR and ES Excursion: Joint distributions

Conditional distributions

distribution of Y conditional on X = 0 compared with distribution
conditional on X = −2:
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Multi-period VaR and ES Excursion: Joint distributions

Conditional distributions

ρ = 0.8: the information conveyed by the known realization of X
increases with increasing dependency between the variables
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Multi-period VaR and ES Excursion: Joint distributions

Interpretation

given jointly normally distributed variables X and Y , you can think
about X as being a linear transformation of Y , up to some
normally distributed noise term ε :

X = c1 (Y − c2) + c3ε,

with

c1 =
σX

σY
ρ

c2 = µY

c3 = σX
√

1− ρ2

proof will follow further down
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Multi-period VaR and ES Excursion: Joint distributions

Marginal distributions

marginal distributions are obtained by integrating out with respect to
the other dimension
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Multi-period VaR and ES Excursion: Joint distributions

Asymmetric dependency

there exist joint bivariate distributions with normally distributed
margins that can not be generated from a bivariate normal distribution
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Multi-period VaR and ES Excursion: Joint distributions

Covariance

Covariance
The covariance of two random variables X and Y is defined as

E [(X − E [X ]) (Y − E [Y ])] = E [XY ]− E [X ]E [Y ] .

captures tendency of variables X and Y to jointly take on values
above the expectation
given that Cov (X ,Y ) = 0, the random variables X and Y are called
uncorrelated
Cov(X ,X ) = E [(X − E [X ]) · (X − E [X ])] = E

[
(X − E [X ])2

]
=

V [X ]
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Multi-period VaR and ES Excursion: Joint distributions

Covariance
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Multi-period VaR and ES Excursion: Joint distributions

Covariance
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Multi-period VaR and ES Excursion: Joint distributions

1 % initialize parameters
2 mu1 = 0;
3 mu2 = 0;
4 sigma1 = 1;
5 sigma2 = 1.5;
6 rho = 0.2;
7 n = 10000;
8

9 % simulate data
10 data = mvnrnd ([mu1 mu2],[sigma1 ^2 rho*sigma1*sigma2; rho*

sigma1*sigma2 sigma2 ^2],n);
11 data = data (:,1).*data (:,2);
12 hist(data ,40)
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Multi-period VaR and ES Excursion: Joint distributions

Covariance
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Multi-period VaR and ES Excursion: Joint distributions

Covariance under linear transformation

Cov (aX + b, cY + d) = E [(aX + b − E [aX + b]) (cY + d − E [cY + d ])]

= E [(aX − E [aX ] + b − E [b]) (cY − E [cY ] + d − E [d ])]

= E [a (X − E [X ]) · c (Y − E [Y ])]

= ac · E [(X − E [X ]) · (Y − E [Y ])]

= ac · Cov (X ,Y )
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Multi-period VaR and ES Excursion: Joint distributions

Linear Correlation

Linear correlation
The linear correlation coefficient between two random variables X and Y is
defined as

ρ(X ,Y ) =
Cov(X ,Y )√

σ2
Xσ

2
Y

,

where Cov(X ,Y ) denotes the covariance between X and Y , and σ2
X , σ2

Y
denote the variances of X and Y .

in the elliptical world, any given distribution can be completely
described by its margins and its correlation coefficient.
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Multi-period VaR and ES Excursion: Sums over two random variables

Jointly normally distributed variables
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Multi-period VaR and ES Excursion: Sums over two random variables

Jointly normally distributed variables

all two-dimensional points on red line result in the value 4 after
summation
for example: 4 + 0, 3 + 1, 2.5 + 1.5, or −5 + 1
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Multi-period VaR and ES Excursion: Sums over two random variables

Jointly normally distributed variables

approximate distribution of X + Y : counting the number of simulated
values between the lines gives estimator for relative frequency of a
summation value between 4 and 4.2
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Multi-period VaR and ES Excursion: Sums over two random variables

Distribution of sum of variables

dividing two-dimensional space into series of line segments leads to
approximation of distribution of new random variable X + Y
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Multi-period VaR and ES Excursion: Sums over two random variables

Effects of correlation

increasing correlation leads to higher probability of joint large
positive or large negative realizations
joint large realizations of same sign lead to high absolute values after
summation: increasing probability in the tails
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Multi-period VaR and ES Excursion: Sums over two random variables

Effects of correlation

small variances in case of negative correlations display benefits of
diversification
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Multi-period VaR and ES Excursion: Sums over two random variables

Moments of sums of variables

Theorem
Given random variables X and Y of arbitrary distribution with existing
first and second moments, the first and second moment of the summed up
random variable Z = X + Y are given by

E [X + Y ] = E [X ] + E [Y ] ,

and
V (X + Y ) = V (X ) + V (Y ) + 2Cov (X ,Y ) .

In general, for more than 2 variables, it holds:

E

[
n∑

i=1

Xi

]
=

n∑
i=1

E [Xi ] ,

V

(
n∑

i=1

Xi

)
=

n∑
i=1

V (Xi ) +
n∑

i 6=j

Cov (Xi ,Xj) .
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Multi-period VaR and ES Excursion: Sums over two random variables

Proof: linearity in joint normal distribution

V (X + Y ) = E
[
(X + Y )− E

[
(X + Y )2

]]
= E

[
(X + Y )2

]
− (E [X + Y ])2

= E
[
X 2 + 2XY + Y 2]− (E [X ] + E [Y ])2

= E
[
X 2]− E [X ]2 + E

[
Y 2]− E [Y ]2 + 2E [XY ]− 2E [X ]E [Y ]

= V (X ) + V (Y ) + 2 (E [XY ]− E [X ]E [Y ])

= V (X ) + V (Y ) + 2Cov(X ,Y )
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Multi-period VaR and ES Excursion: Sums over two random variables

Moments of sums of variables

calculation of V (X + Y ) requires knowledge of the covariance of X
and Y
however, more detailed information about the dependence structure of
X and Y is not required
for linear functions in general:

E [aX + bY + c] = aE [X ] + bE [Y ] + c

V (aX + bY + c) = a2V (X ) + b2V (Y ) + 2ab · Cov (X ,Y )

also:

Cov(X +Y ,K+L) = Cov(X ,K )+Cov(X , L)+Cov(Y ,K )+Cov(Y , L)
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Multi-period VaR and ES Linearity in joint normal distribution

Proof: linearity underlying joint normal distribution

define random variable Z as

Z :=
σX

σY
ρ (Y − µY ) + µX + σX

√
1− ρ2ε,

ε ∼ N (0, 1)

then the expectation is given by

E [Z ] =
σX

σY
ρE [Y ]− σX

σY
ρµY + µX + σX

√
1− ρ2E [ε]

= µY

(
σX

σY
ρ− σX

σY
ρ

)
+ µX

= µX
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Multi-period VaR and ES Linearity in joint normal distribution

the variance is given by

V (Z )
Y⊥ε
= V

(
σX

σY
ρY
)

+ V
(
σX
√

1− ρ2ε
)

=
σ2

X
σ2

Y
σ2

Y ρ
2 + σ2

X
(
1− ρ2) · 1

= σ2
X
(
ρ2 + 1− ρ2)

= σ2
X
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Multi-period VaR and ES Linearity in joint normal distribution

being the sum of two independent normally distributed random
variables, Z is normally distributed itself, so that we get

Z ∼ N
(
µX , σ

2
X
)
⇔ Z ∼ X

for the conditional distribution of Z given Y = y we get

Z |Y =y ∼ N
(
µX +

σX

σY
ρ (y − µY ) ,

(
σX
√

1− ρ2
)2
)

it remains to show
Z |Y =y ∼ X |Y =y

to get
(Z ,Y ) ∼ (X ,Y )
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Multi-period VaR and ES Linearity in joint normal distribution

Conditional normal distribution I

for jointly normally distributed random variables X and Y , conditional
marginal distributions remain normally distributed:

f (x |y) =
f (x , y)

f (y)

=

1
2πσXσY

√
1−ρ2

1√
2πσY

·
exp

(
− 1

2(1−ρ2)

[
(x−µX )2

σ2
X

+ (y−µY )2

σ2
Y
− 2ρ(x−µX )(y−µY )

σXσY

])
exp

(
− (y−µY )2

2σ2
Y

)
!

=
1√
2πσ

· exp

(
−(x − µ)2

2σ2

)
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Multi-period VaR and ES Linearity in joint normal distribution

Conditional normal distribution II

1√
2πσ

!
=

1
2πσXσY

√
1−ρ2

1√
2πσY

=

√
2π

2πσX
√

1− ρ2

=
1

√
2πσX

√
1− ρ2

⇔ σ = σX
√

1− ρ2
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Multi-period VaR and ES Linearity in joint normal distribution

Conditional normal distribution III

exp
(
− (x − µ)2

2σ2

)
!

=
exp

(
− 1

2(1−ρ2)

[
(x−µX )2

σ2
X

+ (y−µY )2

σ2
Y
− 2ρ(x−µX )(y−µY )

σXσY

])
exp

(
− (y−µY )2

2σ2
Y

)
⇔ − (x − µ)2

σ2 =− 1
(1− ρ2)

[
(x − µX )2

σ2
X

+
(y − µY )2

σ2
Y

− 2ρ (x − µX ) (y − µY )

σXσY

]
+

(y − µY )2

σ2
Y

⇔ (x − µ)2

σ2 =
1

(1− ρ2)σ2
X

(
(x − µX )2 +

σ2
X

σ2
Y

(y − µY )2
)

+
1

(1− ρ2)σ2
X

(
−2ρ (x − µX ) (y − µY )

σX

σY
− σ2

X

σ2
Y

(y − µY )2 (1− ρ2)

)
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Multi-period VaR and ES Linearity in joint normal distribution

Conditional normal distribution IV

⇔ (x − µ)2 = (x − µX )2 +
(
1−

(
1− ρ2)) σ2

X

σ2
Y

(y − µY )2 − 2ρ (x − µX ) (y − µY )
σX

σY

⇔ (x − µ)2 =

(
(x − µX )− σX

σY
ρ (y − µY )

)2

⇔ µ =µX +
σX

σY
ρ (y − µY )

for (X ,Y ) ∼ N2

([
µX

µY

]
,

[
σ2

X ρ · σXσY

ρ · σXσY σ2
Y

])
, given the realization of

Y , X is distributed according to

X ∼ N
(
µX +

σX

σY
ρ (y − µY ) ,

(
σX
√

1− ρ2
)2
)
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Multi-period VaR and ES Linearity in joint normal distribution

Jointly normally distributed variables

Theorem
Given jointly normally distributed univariate random variables
X ∼ N

(
µX , σ

2
X
)
and Y ∼ N

(
µY , σ

2
Y
)
, the deduced random vector

Z := X + Y is also normally distributed, with parameters

µZ = µX + µY

and
σZ =

√
V (X ) + V (Y ) + 2Cov (X ,Y ).

That is,

X + Y ∼ N (µX + µY ,V (X ) + V (Y ) + 2Cov (X ,Y )) .
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Multi-period VaR and ES Linearity in joint normal distribution

Remarks

note: the bivariate random vector (X ,Y ) has to be distributed
according to a bivariate normal distribution, i.e. (X ,Y ) ∼ N2 (µ,Σ)

given that X ∼ N
(
µX , σ

2
X
)
and Y ∼ N

(
µY , σ

2
Y
)
, with dependence

structure different to the one implicitly given by a bivariate normal
distribution, the requirements of the theorem are not fulfilled
in general, with deviating dependence structure we can only infer
knowledge about first and second moments of the distribution of
Z = X + Y , but we are not able to deduce the shape of the
distribution
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Multi-period VaR and ES Linearity in joint normal distribution

Convolution with asymmetric dependence

univariate normally distributed random vectors X ∼ N
(
µX , σ

2
X
)
and

Y ∼ N
(
µY , σ

2
Y
)
, linked by asymmetric dependence structure with

stronger dependence for negative results than for positive results
approximation for distribution of X + Y :

note: X + Y does not follow a normal distribution!
X + Y � N

(
µ, σ2)
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Aggregation: simplifying assumptions

Independence over time

Assumption
The return of any given period shall be independent of the returns of
previous periods:

P
(
r log
t ∈ [a, b] , r log

t+k ∈ [c , d ]
)

= P
(
r log
t ∈ [a, b]

)
· P
(
r log
t ∈ [c , d ]

)
,

for all k ∈ Z, a, b, c , d ∈ R.
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Aggregation: simplifying assumptions

Consequences

consequences of assumption of independence over time combined with

case 1: arbitrary return distribution

moments of multi-period returns can be derived from moments of
one-period returns: square-root-of-time scaling for standard deviation
multi-period return distribution is unknown: for some important risk
measures like VaR or ES no analytical solution exists

case 2: normally distributed returns

moments of multi-period returns can be derived from moments of
one-period returns: square-root-of-time scaling for standard deviation
multi-period returns follow normal distribution: VaR and ES can be
derived according to square-root-of-time scaling
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Aggregation: simplifying assumptions

Multi-period moments

expectation: (independence unnecessary)

E
[
r log
t,t+n−1

]
= E

[
n−1∑
i=0

r log
t+i

]
=

n−1∑
i=0

E
[
r log
t+i

]
=

n−1∑
i=0

µ = nµ

variance:

V
(
r log
t,t+n−1

)
= V

(
n−1∑
i=0

r log
t+i

)
=

n−1∑
i=0

V
(
r log
t+i

)
+

n−1∑
i 6=j

Cov
(
r log
t+i , r

log
t+j

)

=
n−1∑
i=0

V
(
r log
t+i

)
+ 0 = nσ2

standard deviation:

σt,t+n−1 =

√
V
(
r log
t,t+n−1

)
=
√
nσ2 =

√
nσ
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Aggregation: simplifying assumptions Normally distributed returns

Distribution of multi-period returns

assumption: r log
t ∼ N

(
µ, σ2)

consequences:

random vector
(
r log
t , r log

t+k

)
follows a bivariate normal distribution

with zero correlation because of assumed independence(
r log
t , r log

t+k

)
∼ N2

([
µ
µ

]
,

[
σ2 0
0 σ2

])
as a sum of components of a multi-dimensional normally distributed
random vector, multi-period returns are normally distributed
themselves

using formulas for multi-period moments we get

r log
t,t+n−1 ∼ N

(
nµ, nσ2)
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Aggregation: simplifying assumptions Normally distributed returns

Multi-period VaR

notation:

µn := E
[
r log
t,t+n−1

]
= nµ

σn := σt,t+n−1 =
√

nσ

VaR(n)
α := VaRα

(
r log
t,t+n−1

)
rewriting VaRα for multi-period returns as function of one-period
VaRα :

VaR(n)
α = −µn + σnΦ−1 (α)

= −nµ+
√
nσΦ−1 (α)

= −nµ+
√
nµ−

√
nµ+

√
nσΦ−1 (α)

=
(√

n − n
)
µ+
√
n
(
−µ+ σΦ−1 (α)

)
=
(√

n − n
)
µ+
√
nVaRα

(
r log
t

)
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Aggregation: simplifying assumptions Normally distributed returns

Multi-period VaR

furthermore, for the case of µ = 0 we get

VaR(n)
α =

√
nσΦ−1 (α) =

√
nVaRα

(
r log
t

)
this is known as the square-root-of-time scaling
requirements:

returns are independent through time: no autocorrelation
returns are normally distributed with zero mean: r log

t ∼ N
(
0, σ2

)
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Aggregation: simplifying assumptions Normally distributed returns

Multi-period ES

ES (n)
α = −µn + σn

φ
(
Φ−1 (α)

)
1− α

= −nµ+
√
nσ
φ
(
Φ−1 (α)

)
1− α

=
(√

n − n
)
µ+
√
n

(
−µ+ σ

φ
(
Φ−1 (α)

)
1− α

)
=
(√

n − n
)
µ+
√
nESα

again, for µ = 0 the square-root-of-time scaling applies:

ES (n)
α =

√
nESα
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Aggregation: simplifying assumptions Normally distributed returns

Example: market risk

extending DAX example, with parameters of normal distribution fitted
to real world data given by µ̂ = 0.0344 and σ̂ = 1.5403
calculate multi-period VaR and ES for 5 and 10 periods
using multi-period formulas for VaR and ES :

VaR(n)
α =

(√
n − n

)
µ+
√
nVaRα

(
r log
t

)
=
(√

5− 5
)
· 0.0344 +

√
5VaRα

ES (n)
α =

(√
n − n

)
µ+
√
nESα

=
(√

5− 5
)
· 0.0344 +

√
5ESα
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Aggregation: simplifying assumptions Normally distributed returns

using previously calculated values, for 5-day returns we get :

VaR(5)
0.99 =

(√
5− 5

)
· 0.0344 +

√
5 · 3.5489

= −2.7639 + 7.9356
= 5.1716

ES (5)
0.99 = −2.7639 + 9.1191 = 6.3552

for 10-day returns we get:

VaR(10)
0.99 = 10.9874

ES (10)
0.99 = −0.2352 +

√
10 · 4.0782 = 12.6612
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Aggregation: simplifying assumptions Normally distributed returns

Example: multi-period portfolio loss

let St,i denote the price of stock i at time t
given λi shares of stock i , the portfolio value in t is given by

Pt =
d∑

i=1

λiSt,i

one-day portfolio loss:

Lt+1 = − (Pt+1 − Pt)
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Aggregation: simplifying assumptions Normally distributed returns

Model setup

target variable: n-day cumulated portfolio loss for periods
{t, t + 1, . . . , t + n}:

Lt,t+n = − (Pt+n − Pt)

capture uncertainty by modelling logarithmic returns
r log
t = log St+1 − log St as random variables
consequence: instead of directly modelling the distribution of our
target variable, our model treats it as function of stochastic risk
factors, and tries to model the distribution of the risk factors

Lt,t+n = f
(
r log
t , ..., r log

t+n−1

)
flexibility: changes in target variable (portfolio changes) do not
require re-modelling of the stochastic part at the core of the model
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Aggregation: simplifying assumptions Normally distributed returns

Function of risk factors

Lt,t+n = − (Pt+n − Pt)

= −

(
d∑

i=1

λiSt+n,i −
d∑

i=1

λiSt,i

)

= −
d∑

i=1

λi (St+n,i − St,i )

= −
d∑

i=1

λiSt,i

(
St+n,i

St,i
− 1
)

= −
d∑

i=1

λiSt,i

(
exp

(
log
(
St+n,i

St,i

))
− 1
)
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Aggregation: simplifying assumptions Normally distributed returns

Function of risk factors

= −
d∑

i=1

λiSt,i

(
exp

(
log
(
St+n,i

St,i

))
− 1
)

= −
d∑

i=1

λiSt,i

(
exp

(
r log
(t,t+n),i

)
− 1
)

= −
d∑

i=1

λiSt,i

(
exp

(
n∑

k=0

r log
(t+k),i

)
− 1

)
= g

(
r log
t,1 , r

log
t+1,1, . . . , r

log
t+n,1, r

log
t,2 , . . . , r

log
t,d , . . . r

log
t+n,d

)
target variable is non-linear function of risk factors: non-linearity
arises from non-linear portfolio aggregation in logarithmic world
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Aggregation: simplifying assumptions Normally distributed returns

Simplification for dimension of time

assuming normally distributed daily returns r log
t as well as

independence of daily returns over time, we know that multi-period
returns

r log
t,t+n =

n∑
i=0

r log
t+i

have to be normally distributed with parameters

µn = nµ

and
σn =

√
nσ
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Aggregation: simplifying assumptions Normally distributed returns

Simplification for dimension of time

the input parameters can be reduced to

Lt,t+n = −
d∑

i=1

λiSt,i

(
exp

(
r log
(t,t+n),i

)
− 1
)

= h
(
r log
(t,t+n),1, . . . , r

log
(t,t+n),d

)
non-linearity still holds because of non-linear portfolio aggregation
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Aggregation: simplifying assumptions Normally distributed returns

Application: real world data

estimating parameters of a normal distribution for historical daily
returns of BMW and Daimler for the period from 01.01.2006 to
31.12.2010 we get

µB = −0.0353, σB = 2.3242

and
µD = −0.0113 σD = 2.6003

assuming independence over time, the parameters of 3-day returns are
given by

µB
3 = −0.1058, σB

3 = 4.0256

and
µD

3 = −0.0339, σD
3 = 4.5039
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Aggregation: simplifying assumptions Normally distributed returns

Asset dependency

so far, the marginal distribution of individual one-period returns has
been specified, as well as the distribution of multi-period returns
through the assumption of independence over time
however, besides the marginal distributions, in order to make
derivations of the model, we also have to specify the dependence
structure between different assets
once the dependence structure has been specified, simulating from the
complete two-dimensional distribution and plugging into function h
gives Monte Carlo solution of the target variable

Groll (Seminar für Finanzökonometrie) Slides for Risk Management Prof. Mittnik, PhD 119 / 133



Aggregation: simplifying assumptions Normally distributed returns

Linearization

in order to eliminate non-linearity, approximate function by linear
function

f (x + ∆t) = f (x) + f
′
(x) ·∆t

denoting Zt := log St , makes ∆t expressable with risk factors:

Pt+1 =
d∑

i=1

λiSt+1,i

=
d∑

i=1

λiexp (log (St+1,i ))

=
d∑

i=1

λiexp
(
Zt,i + r log

t+1,i

)
= f

(
Zt + r log

t+1

)
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Aggregation: simplifying assumptions Normally distributed returns

Linearization

function f (u) =
∑d

i=1 λiexp (ui ) has to be approximated by
differentiation
differentiating with respect to the single coordinate i :

∂f (u)

∂ui
=
∂
(∑d

i=1 λiexp (ui )
)

∂ui
= λiexp (ui )

⇒ f
(
Zt + r log

t+1

)
≈ f (Zt) + f

′
(Zt) r log

t+1

= f (Zt) +
d∑

i=1

∂f (Zt)

∂Zt,i
r log
t+1,i

=
d∑

i=1

λiexp (Zt,i ) +
d∑

i=1

λiexp (Zt,i ) r
log
t+1,i

=
d∑

i=1

λiSt,i +
d∑

i=1

λiSt,i r
log
t+1,i
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Aggregation: simplifying assumptions Normally distributed returns

Linearization

linearization of one-period portfolio loss:

Lt+1 = − (Pt+1 − Pt)

≈ −

(
d∑

i=1

λiSt,i +
d∑

i=1

λiSt,i r
log
t+1,i −

d∑
i=1

λiSt,i

)

= −

(
d∑

i=1

λiSt,i r
log
t+1,i

)
= a1r

log
t+1,1 + a2r

log
t+1,2 + . . .+ ad r

log
t+1,d

linearization of 3-period portfolio loss:

Lt,t+2 ≈ −

(
d∑

i=1

λiSt,i r
log
(t,t+2),i

)
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Aggregation: simplifying assumptions Normally distributed returns

now that non-linearities have been removed, make use of fact that
linear function of normally distributed returns is still normally
distributed
assuming the dependence structure between daily returns of BMW
and Daimler to be symmetric, joint returns will follow a bivariate
normal distribution, and 3-day returns of BMW and Daimler also
follow a joint normal distribution
given the covariance of daily returns, the covariance of 3-day returns
can be calculated according to

Cov
(
rB
t,t+2, r

D
t,t+2

)
= Cov

(
rB
t + rB

t+1 + rB
t+2, r

D
t + rD

t+1 + rD
t+2

)
=

2∑
i,j=0

Cov
(
rB
t+i , r

D
t+j

)
= Cov

(
rB
t , r

D
t

)
+ Cov

(
rB
t+1, r

D
t+1

)
+ Cov

(
rB
t+2, r

D
t+2

)
= 3Cov

(
rB
t , r

D
t

)
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Aggregation: simplifying assumptions Normally distributed returns

Application

with estimated correlation ρ̂ = 0.7768, the covariance becomes

Ĉov
(
rBt , r

D
t

)
= ρ̂ ·

(
σB
)
·
(
σD
)

= 0.7768 · 2.3242 · 2.6003 = 4.6947

and
Ĉov

(
rBt,t+2, r

D
t,t+2

)
= 14.0841

simulating from two-dimensional normal distribution, and plugging
into function h will give a simple and fast approximation of the
distribution of the target variable
as the target variable is a linear function of jointly normally
distributed risk factors, it has to be normally distributed itself: hence,
an analytical solution is possible
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Aggregation: simplifying assumptions Normally distributed returns

Recapturing involved assumptions

individual daily logarithmic returns follow normal distribution
returns are independent over time
non-linear function for target variable has been approximated by
linearization
dependence structure according to joint normal distribution
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Properties of risk measures

Example: coherence

Consider a portfolio consisting of d = 100 corporate bonds. The probability
of default shall be 0.5% for each firm, with occurrence of default
independently of each other. Given no default occurs, the value of the
associated bond increases from xt = 100 € this year to xt+1 = 102 € next
year, while the value decreases to 0 in the event of default.
Calculate VaR0.99 for a portfolio A consisting of 100 shares of one single
given corporate, as well as for a portfolio B, which consists of one share
of each of the 100 different corporate bonds. Interpret the results. What
does that mean for VaR as a risk measure, and what can be said about
Expected Shortfall with regard to this feature?
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Properties of risk measures

Example

setting: d = 100 different corporate bonds, each with values given by

t t + 1
value 100 102 0

probability 0.995 0.005

defaults are independent of each other
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Properties of risk measures

Example

associated loss distribution:
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Properties of risk measures

Example

portfolio A : 100 bonds of one given firm
VaRA

0.99 = inf {l ∈ R : FL (l) ≥ 0.99} = −200
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Properties of risk measures

portfolio B : 100 bonds, one of each firm
number of defaults are distributed according to Binomial distribution:

P (no defaults) = 0.995100 = 0.6058

P (one default) = 0.99599 · 0.005 ·
(

100
1

)
= 0.3044

P (two defaults) = 0.99598 · 0.0052 ·
(

100
2

)
= 0.0757

P (three defaults) = 0.99597 · 0.0053 ·
(

100
3

)
= 0.0124

hence, because of P (defaults ≤ 2) = 0.9859 and
P (defaults ≤ 3) = 0.9983, to be protected with probability of at least
99%, the capital cushion has to be high enough to offset the losses
associated with 3 defaults
losses for 3 defaults: −2 · 97 + 100 · 3 = 106
hence, VaRB

0.99 = 106
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Properties of risk measures

resulting loss distribution:

note: due to diversification effects, the risk inherent to portfolio B
should be less than the risk inherent to portfolio A
VaR as a measure of risk fails to account for this reduction of risk: it
is not subadditiv
ES does fulfill this property: it is subadditiv
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Properties of risk measures

Coherence of risk measures

Definition
Let L denote the set of all possible loss distributions which are almost
surely finite. A risk measure % is called coherent if it satisfies the following
axioms:
Translation Invariance: For all L ∈ L and every c ∈ R we have

% (L + c) = % (L) + c .

It follows that % (L− % (L)) = % (L)− % (L) = 0 : the portfolio hedged by
an amount equal to the measured risk does not entail risk anymore
Subadditivity: For all L1, L2 ∈ L we have

% (L1 + L2) ≤ % (L1) + % (L2) .

Due to diversification, the joint risk cannot be higher than the individual
ones.
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Properties of risk measures

Coherence of risk measures

Definition
Positive Homogeneity: For all L ∈ L and every λ > 0 we have

% (λL) = λ% (L) .

Increasing the exposure by a factor of λ also increases the risk measured by
the same factor.
Monotonicity: For all L1, L2 ∈ L such that L1 ≤ L2 almost surely we have

% (L1) ≤ % (L2) .
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