Univariate Time Series Analysis

Klaus Wohlrabe¹ and Stefan Mittnik

¹ Ifo Institute for Economic Research, wohlrabe@ifo.de

SS 2016

- 1 Organizational Details and Outline
- 2 An (unconventional) introduction
 - Time series Characteristics
 - Necessity of (economic) forecasts
 - Components of time series data
 - Some simple filters
 - Trend extraction
 - Cyclical Component
 - Seasonal Component
 - Irregular Component
 - Simple Linear Models
- 3 A more formal introduction
- 4 (Univariate) Linear Models
 - Notation and Terminology
 - Stationarity of ARMA Processes
 - Identification Tools

5 Modeling ARIMA Processes: The Box-Jenkins Approach

- Estimation of Identification Functions
- Identification
- Estimation
 - Yule-Walker Estimation
 - Least Squares Estimators
 - Maximum Likelihood Estimator (MLE)
- Model specification
- Diagnostic Checking

6 Prediction

- Some Theory
- Examples
- Forecasting in Practice
- A second Case Study
- Forecasting with many predictors

7 Trends and Unit Roots

- Stationarity vs. Nonstationarity
- Testing for Unit Roots: Dickey-Fuller-Test
- Testing for Unit Roots: KPSS

8 Models for financial time series

- ARCH
- GARCH
- GARCH: Extensions

Table of content I

1 Organizational Details and Outline

- 2 An (unconventional) introduction
 - Time series Characteristics
 - Necessity of (economic) forecasts
 - Components of time series data
 - Some simple filters
 - Trend extraction
 - Cyclical Component
 - Seasonal Component
 - Irregular Component
 - Simple Linear Models
- 3 A more formal introduction
- 4 (Univariate) Linear Models
 - Notation and Terminology

Table of content II

- Stationarity of ARMA Processes
- Identification Tools
- 5 Modeling ARIMA Processes: The Box-Jenkins Approach
 - Estimation of Identification Functions
 - Identification
 - Estimation
 - Yule-Walker Estimation
 - Least Squares Estimators
 - Maximum Likelihood Estimator (MLE)
 - Model specification
 - Diagnostic Checking

6 Prediction

- Some Theory
- Examples
- Forecasting in Practice

Table of content III

- A second Case Study
- Forecasting with many predictors

7 Trends and Unit Roots

- Stationarity vs. Nonstationarity
- Testing for Unit Roots: Dickey-Fuller-Test
- Testing for Unit Roots: KPSS

8 Models for financial time series

- ARCH
- GARCH
- GARCH: Extensions

Time series analysis:

- Focus: Univariate Time Series and Multivariate Time Series Analysis.
- A lot of theory and many empirical applications with real data
- Organization:
 - 12.04. 24.05.: Univariate Time Series Analysis, six lectures (Klaus Wohlrabe)
 - 31.05. End of Semester: Multivariate Time Series Analysis (Stefan Mittnik)
 - 15.04. 27.05. mondays and fridays: Tutorials (Univariate): Malte Kurz, Elisabeth Heller
- ⇒ Lectures and Tutorials are complementary!

Time series analysis:

- Focus: Univariate Time Series and Multivariate Time Series Analysis.
- A lot of theory and many empirical applications with real data
- Organization:
 - 12.04. 24.05.: Univariate Time Series Analysis, six lectures (Klaus Wohlrabe)
 - 31.05. End of Semester: Multivariate Time Series Analysis (Stefan Mittnik)
 - 15.04. 27.05. mondays and fridays: Tutorials (Univariate): Malte Kurz, Elisabeth Heller
- ⇒ Lectures and Tutorials are complementary!

Time series analysis:

- Focus: Univariate Time Series and Multivariate Time Series Analysis.
- A lot of theory and many empirical applications with real data
- Organization:
 - 12.04. 24.05.: Univariate Time Series Analysis, six lectures (Klaus Wohlrabe)
 - 31.05. End of Semester: Multivariate Time Series Analysis (Stefan Mittnik)
 - 15.04. 27.05. mondays and fridays: Tutorials (Univariate): Malte Kurz, Elisabeth Heller

■ ⇒ Lectures and Tutorials are complementary!

Time series analysis:

- Focus: Univariate Time Series and Multivariate Time Series Analysis.
- A lot of theory and many empirical applications with real data
- Organization:
 - 12.04. 24.05.: Univariate Time Series Analysis, six lectures (Klaus Wohlrabe)
 - 31.05. End of Semester: Multivariate Time Series Analysis (Stefan Mittnik)
 - 15.04. 27.05. mondays and fridays: Tutorials (Univariate): Malte Kurz, Elisabeth Heller
- ⇒ Lectures and Tutorials are complementary!

Tutorials and Script

- Script is available at: moodle website (see course website)
- Password: armaxgarchx
- Script is available at the day before the lecture (noon)
- All datasets and programme codes
- Tutorial: Mixture between theory and R Examples

Literature

- Shumway and Stoffer (2010): Time Series Analysis and Its Applications: With R Examples
- Box, Jenkins, Reinsel (2008): Time Series Analysis: Forecasting and Control
- Lütkepohl (2005): Applied Time Series Econometrics.
- Hamilton (1994): Time Series Analysis.
- Lütkepohl (2006): New Introduction to Multiple Time Series Analysis
- Chatham (2003): The Analysis of Time Series: An Introduction
- Neusser (2010): Zeitreihenanalyse in den Wirtschaftswissenschaften

- Evidence of academic achievements: Two hour written exam both for the univariate and multivariate part
- Schedule for the Univariate Exam: 30/05 (to be confirmed!!!)

- Basic Knowledge (ideas) of OLS, maximum likelihood estimation, heteroscedasticity, autocorrelation.
- Some algebra

Software

Where you have to pay:

- STATA
- Eviews

Matlab (Student version available, about 80 Euro)

Free software:

- R (www.r-project.org)
- Jmulti (www.jmulti) (Based on the book by Lütkepohl (2005))

Tools used in this lecture

- usual standard lecture (as you might expected)
- derivations using the whiteboard (not available in the script!)
- live demonstrations (examples) using Excel, Matlab, Eviews, Stata and JMulti
- live programming using Matlab

Outline

Introduction

- Linear Models
- Modeling ARIMA Processes: The Box-Jenkins Approach
- Prediction (Forecasting)
- Nonstationarity (Unit Roots)
- Financial Time Series

Goals

After the lecture you should be able to ...

- ... identify time series characteristics and dynamics
- ... build a time series model
- ... estimate a model
- … check a model
- ... do forecasts
- ... understand financial time series

Questions to keep in mind

General Question	Follow-up Questions
All types of data	
How are the variables de- fined?	What are the units of measurement? Do the data com- prise a sample? Ifo so, how was the sample drawn?
What is the relationship be- tween the data and the phe- nomenon of interest?	Are the variables direct measurements of the phe- nomenon of interest, proxies, correlates, etc.?
Who compiled the data?	Is the data provider unbiased? Does the provider pos- sess the skills and resources to enure data quality and integrity?
What processes generated the data?	What theory or theories can account for the relationships between the variables in the data?
Time Series data	
What is the frequency of measurement	Are the variables measured hourly, daily monthly, etc.? How are gaps in the data (for example, weekends and holidays) handled?
What is the type of mea- surement?	Are the data a snapshot at a point in time, an average over time, a cumulative value over time, etc.?
Are the data seasonally ad- justed?	If so, what is the adjustment method? Does this method introduce artifacts in the reported series?

Table of content I

Organizational Details and Outline

2 An (unconventional) introduction

- Time series Characteristics
- Necessity of (economic) forecasts
- Components of time series data
- Some simple filters
- Trend extraction
- Cyclical Component
- Seasonal Component
- Irregular Component
- Simple Linear Models
- 3 A more formal introduction
- 4 (Univariate) Linear Models
 - Notation and Terminology

Table of content II

- Stationarity of ARMA Processes
- Identification Tools
- 5 Modeling ARIMA Processes: The Box-Jenkins Approach
 - Estimation of Identification Functions
 - Identification
 - Estimation
 - Yule-Walker Estimation
 - Least Squares Estimators
 - Maximum Likelihood Estimator (MLE)
 - Model specification
 - Diagnostic Checking

6 Prediction

- Some Theory
- Examples
- Forecasting in Practice

Table of content III

- A second Case Study
- Forecasting with many predictors

7 Trends and Unit Roots

- Stationarity vs. Nonstationarity
- Testing for Unit Roots: Dickey-Fuller-Test
- Testing for Unit Roots: KPSS

8 Models for financial time series

- ARCH
- GARCH
- GARCH: Extensions

Goals and methods of time series analysis

The following section partly draws upon Levine, Stephan, Krehbiel, and Berenson (2002), *Statistics for Managers*.

Goals and methods of time series analysis

- understanding time series characteristics and dynamics
- necessity of (economic) forecasts (for policy)
- time series decomposition (trends vs. cycle)
- smoothing of time series (filtering out noise)
 - moving averages
 - exponential smoothing

- An (unconventional) introduction
 - └─ Time series Characteristics

Time Series

- A time series is timely ordered sequence of observations.
- We denote y_t as an observation of a specific variable at date t.
- A time series is list of observations denoted as $\{y_1, y_2, \dots, y_T\}$ or in short $\{y_t\}_{t=1}^T$.
- What are typical characteristics of times series?

Univariate Time Series Analysis

An (unconventional) introduction

L Time series Characteristics

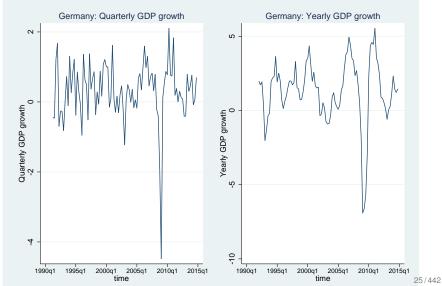
Economic Time Series: GDP I

Germany: GDP (seasonal and workday-adjusted, Chain index)



- An (unconventional) introduction
 - L Time series Characteristics

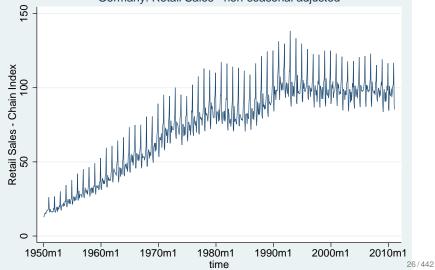
Economic Time Series: GDP II



L Time series Characteristics

Economic Time Series: Retail Sales

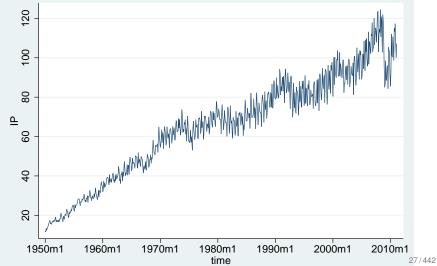
Germany: Retail Sales - non-seasonal adjusted



- An (unconventional) introduction
 - └─ Time series Characteristics

Economic Time Series: Industrial Production

Germany: Industrial Production (non-seasonal adjusted, Chain index)



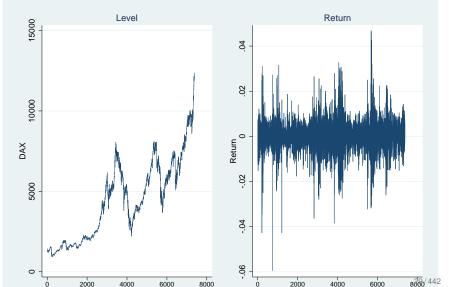
- An (unconventional) introduction
 - L Time series Characteristics

Economic Time Series: Industrial Production



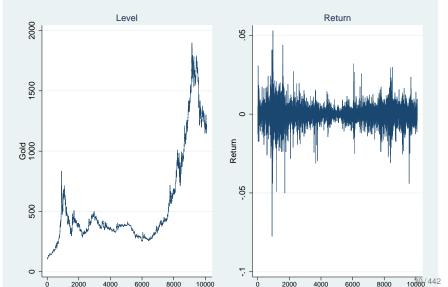
L Time series Characteristics

Economic Time Series: The German DAX



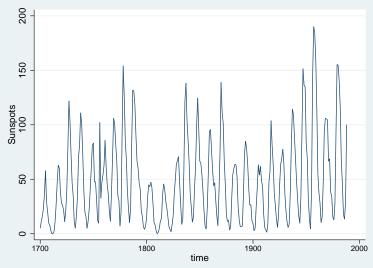
- An (unconventional) introduction
 - L Time series Characteristics

Economic Time Series: Gold Price



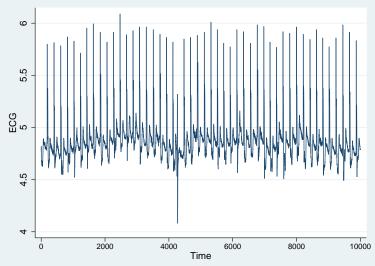
L Time series Characteristics

Further Time Series: Sunspots



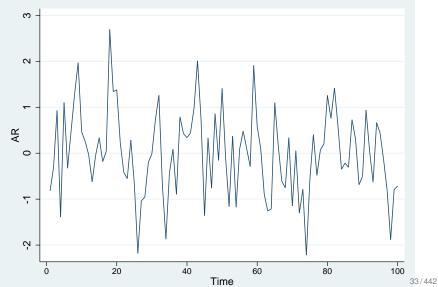
- An (unconventional) introduction
 - L Time series Characteristics

Further Time Series: ECG



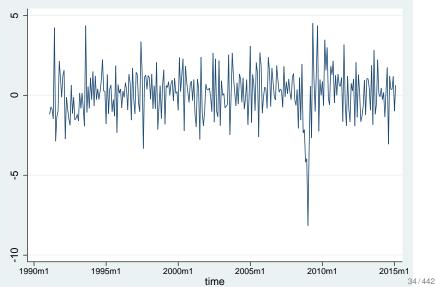
L Time series Characteristics

Further Time Series: Simulated Series: AR(1)



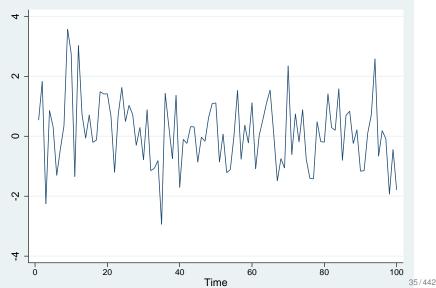
L Time series Characteristics

Further Time Series: Chaos or a real time series?



- An (unconventional) introduction
 - L Time series Characteristics

Further Time Series: Chaos?



L Time series Characteristics

Characteristics of Time series

Trends

- Periodicity (cyclicality)
- Seasonality
- Volatility Clustering
- Nonlinearities
- Chaos

└─ Necessity of (economic) forecasts

Necessity of (economic) Forecasts

- For political actions and budget control governments need forecasts for macroeconomic variables
 GDP, interest rates, unemployment rate, tax revenues etc.
- marketing need forecasts for sales related variables
 - future sales
 - product demand (price dependent)
 - changes in preferences of consumers

└─ Necessity of (economic) forecasts

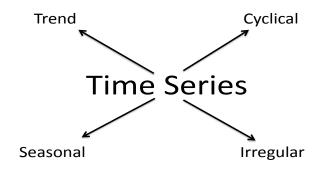
Necessity of (economic) Forecasts

- retail sales company need forecasts to optimize warehousing and employment of staff
- firms need to forecasts cash-flows in order to account of illiquidity phases or insolvency
- university administrations needs forecasts of the number of students for calculation of student fees, staff planning, space organization
- migration flows
- house prices

An (unconventional) introduction

Components of time series data

Time series decomposition



Components of time series data

Time series decomposition

Classical additive decomposition:

$$y_t = d_t + c_t + s_t + \epsilon_t \tag{1}$$

- *d_t* trend component (deterministic, almost constant over time)
- *c_t* cyclical component (deterministic, periodic, medium term horizons)
- *s_t* seasonal component (deterministic, periodic; more than one possible)
- ϵ_t irregular component (stochastic, stationary)

Components of time series data

Time series decomposition

Goal:

Extraction of components d_t , c_t and s_t

The irregular component

$$\epsilon_t = y_t - d_t - c_t - s_t$$

should be stationary and ideally white noise.

- Main task is then to model the components appropriately.
- Data transformation maybe necessary to account for heteroscedasticity (e.g. log-transformation to stabilize seasonal fluctuations)

An (unconventional) introduction

Components of time series data

Time series decomposition

The multiplicative model:

$$y_t = d_t \cdot c_t \cdot s_t \cdot \epsilon_t \tag{2}$$

will be treated in the tutorial.

An (unconventional) introduction

Some simple filters

Simple Filters

$$series = signal + noise$$
 (3)

The statistician would says

$$series = fit + residual$$
 (4)

At a later stage:

$$series = model + errors$$
 (5)

 \Rightarrow mathematical function plus a probability distribution of the error term

└─ Some simple filters

Linear Filters

A linear filter converts one times series (x_T) into another (y_t) by the linear operation

$$y_t = \sum_{r=-q}^{+s} a_r x_{t+r}$$

where a_r is a set of weights. In order to smooth local fluctuation one should chose the weight such that

$$\sum a_r = 1$$

Some simple filters

The idea

$$y_t = f(t) + \epsilon_t \tag{6}$$

We assume that f(t) and ϵ_t are well-behaved. Consider *N* observations at time t_j which are reasonably close in time to t_i . One possible smoother ist

$$y_{t_i}^* = 1/N \sum y_{t_j} = 1/N \sum f(t_j) + 1/N \sum \epsilon_{t_j} \approx f(t_i) + 1/N \sum \epsilon_{t_j}$$
(7)

if $\epsilon_t \sim N(0, \sigma^2)$, the variance of the sum of the residuals is σ^2/N^2 .

The smoother is characterized by

- span, the number of adjacent points included in the calculation
- type of estimator (median, mean, weighted mean etc.)

- An (unconventional) introduction
 - └- Some simple filters

Moving Average

- Used for time series smoothing.
- Consists of a series of arithmetic means.
- Result depends on the window size L (number of included periods to calculate the mean).
- In order to smooth the cyclical component, L should exceed the cycle length
- L should be uneven (avoids another cyclical component)

An (unconventional) introduction

└─ Some simple filters

Moving Average

$$MA(y_t) = \frac{1}{2q+1} \sum_{r=-q}^{+q} y_{t+r}$$
$$L = 2q+1$$

where the weights are given by

$$a_r=\frac{1}{2q+1}$$

- An (unconventional) introduction
 - Some simple filters

Moving Average

Example: Moving Average (MA) over 3 Periods

First MA term: $MA_2(3) = \frac{y_1 + y_2 + y_3}{3}$

Second MA term: $MA_3(3) = \frac{y_2 + y_3 + y_4}{3}$

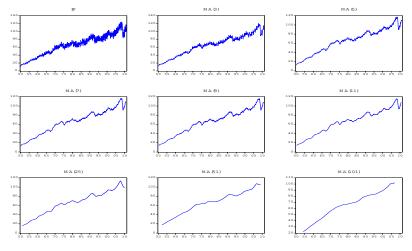
- An (unconventional) introduction
 - └─ Some simple filters

Moving Average

Year	Projects	MA(3) L=3
2005	2	
2006	5	3
2007	2	3
2008	2	3.67
2009	7	5
2010	6	

- An (unconventional) introduction
 - Some simple filters

Moving Average



 \Rightarrow the larger L the smoother and shorter the filtered series

- An (unconventional) introduction
 - Some simple filters

EXAMPLE

Generate a random time series (normally distributed) with $\mathcal{T}=20$

- Quick and dirty: Moving Average with Excel
- Nice and Slow: Write a simple Matlab program for calculating a moving average of order L
- Additional Task: Increase the number of observations to *T* = 100, include a linear time trend and calculate different MAs
- Variation: Include some outliers and see how the calculations change.

- An (unconventional) introduction
 - └─ Some simple filters

- weighted moving averages
- latest observation has the highest weight compared to the previous periods

$$\hat{y}_t = wy_t + (1 - w)\hat{y}_{t-1}$$

Repeated substitution gives:

$$\hat{y}_t = w \sum_{s=0}^{t-1} (1-w)^s y_{t-s}$$

 \Rightarrow that's why it is called exponential smoothing, forecasts are the weighted average of past observations where the weights decline exponentially with time.

- An (unconventional) introduction
 - └─ Some simple filters

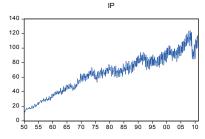
- Is used for smoothing and short-term forecasting
- Choice of w:
 - subjective or through calibration
 - numbers between 0 and 1 Close to 0 for smoothing out unpleasant cyclical or irregular components
 - Close to 1 for forecasting

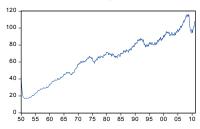
- An (unconventional) introduction
 - └─ Some simple filters

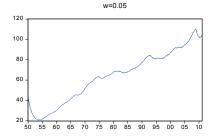
$$\hat{y}_t = wy_t + (1 - w)\hat{y}_{t-1}$$
 $w = 0.2$

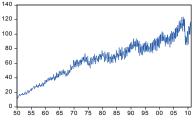


- An (unconventional) introduction
 - Some simple filters









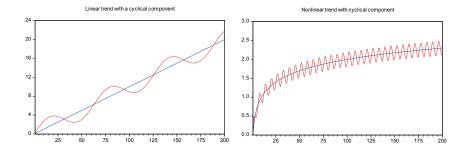
- An (unconventional) introduction
 - Trend extraction

Trend Component

- positive or negative trend
- observed over a longer time horizon
- linear vs. non–linear trend
- smooth vs. non-smooth trends
- \blacksquare \Rightarrow trend is 'unobserved' in reality

- An (unconventional) introduction
 - Trend extraction

Trend Component: Example



- An (unconventional) introduction
 - Trend extraction

Why is trend extraction so important?

The case of detrending GDP

- trend GDP is denoted as potential output
- The difference between trend and actual GDP is called the output gap
- Is an economy below or above the current trend? (Or is the output gap positive or negative?)
 - \Rightarrow consequences for economic policy (wages, prices etc.)
- Trend extraction can be highly controversial!

- An (unconventional) introduction
 - Trend extraction

Linear Trend Model

Year	Time (x_t)	Turnover (y_t)
05	1	2
06	2	5
07	3	2
08	4	2
09	5	7
10	6	6

$$\mathbf{y}_t = \alpha + \beta \mathbf{x}_t$$

An (unconventional) introduction

Trend extraction

Linear Trend Model

Estimation with OLS

$$\hat{y}_t = \hat{\alpha} + \hat{\beta} x_t = 1.4 + 0.743 x_t$$

Forecast for 2011:

$$\hat{y}_{2011} = 1.4 + 0.743 \cdot 7 = 6.6$$

- An (unconventional) introduction
 - Trend extraction

Quadratic Trend Model

Year	Time (x_t)	Time ² (x_t^2)	Turnover (y_t)
05	1	1	2
06	2	4	5
07	3	9	2
08	4	16	2
09	5	25	7
10	6	36	6

$$\mathbf{y}_t = \alpha + \beta_1 \mathbf{x}_t + \beta_2 \mathbf{x}_t^2$$

An (unconventional) introduction

Trend extraction

Quadratic Trend Model

$$\hat{y}_t = \hat{\alpha} + \hat{\beta}x_t + \hat{\beta}_2x_t^2 = 3.4 - 0.757143x_t + 0.214286x_t^2$$

Forecast for 2011:

 $\hat{y}_{2011} = 3.4 - 0.757143 \cdot 7 + 0.214286 \cdot 7^2 = 8.6$

An (unconventional) introduction

L Trend extraction

Exponential Trend Model

Year	Time (x_t)	Turnover (y_t)
05	1	2
06	2	5
07	3	2
08	4	2
09	5	7
10	6	6

 $y_t = \alpha \beta_1^{x_t}$

 \Rightarrow Non-linear Least Squares (NLS) or Linearize the model and use OLS:

$$\log y_t = \log \alpha + \log(\beta_1) x_t$$

 \Rightarrow 'relog' the model

- An (unconventional) introduction
 - Trend extraction

Exponential Trend Model

Estimation via NLS:

$$\hat{y}_t = \hat{lpha} + \hat{eta_1}^{x_t} = 0.08 \cdot 1.93^{x_t}$$

Forecast for 2011:

$$\hat{y}_{2011} = 0.08 \cdot 1.93^7 = 15.4$$

Trend extraction

Logarithmic Trend Model

Year	Time (x_t)	log(<i>Time</i>)	Turnover (y_t)
05	1	log(1)	2
06	2	log(2)	5
07	3	log(3)	2
08	4	$\log(4)$	2
09	5	$\log(5)$	7
10	6	$\log(6)$	6

Logarithmic Trend:

$$y_t = \alpha + \beta_1 \log x_t$$

Trend extraction

Logarithmic Trend Model

Estimation via **OLS**:

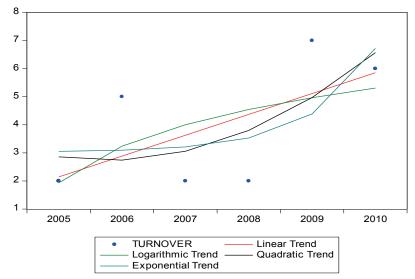
$$\hat{y}_t = \hat{\alpha} + \hat{\beta}_1 \log x_t = 1.934675 + 1.883489 \cdot \log y_t$$

Forecast for 2011:

 $\hat{Y}_{2011} = 1.934675 + 1.883489 \cdot \log(7) = 5.6$

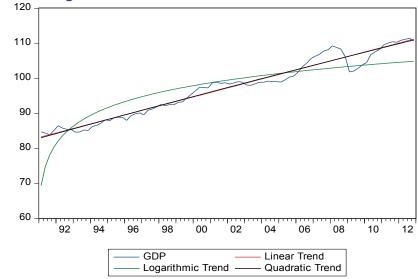
Trend extraction

Comparison of different trend models



- An (unconventional) introduction
 - Trend extraction

Detrending GDP



Trend extraction

Which trend model to choose?

Linear Trend model, if the first differences

$$y_t - y_{t-1}$$

are stationary

Quadratic trend model, if the second differences

$$(y_t - y_{t-1}) - (y_{t-1} - y_{t-2})$$

are stationary

Logarithmic trend model, if the relative differences

$$\frac{y_t - y_{t-1}}{y_t}$$

are stationary

Trend extraction

The Hodrick-Prescott-Filter (HP)

The HP extracts a flexible trend. The filter is given by

$$\min_{\mu_t} \sum_{t=1}^{T} [(y_t - \mu_t)^2 + \lambda \sum_{t=2}^{T-1} \{(\mu_{t+1} - \mu_t) - (\mu_t - \mu_{t-1})\}^2]$$
(8)

where μ_t is the flexible trend and λ a smoothness parameter chosen by the researcher.

- As λ approaches infinity we obtain a linear trend.
- Currently the most popular filter in economics.

Trend extraction

The Hodrick-Prescott-Filter (HP)

How to choose λ ? Hodrick-Prescot (1997) recommend:

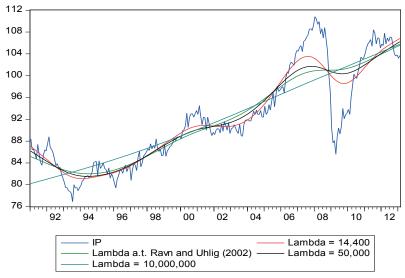
$$\lambda = \begin{cases} 100 \text{ for annual data} \\ 1600 \text{ for quarterly data} \\ 14400 \text{ for monthly data} \end{cases}$$

Alternative: Ravn and Uhlig (2002)

(9)

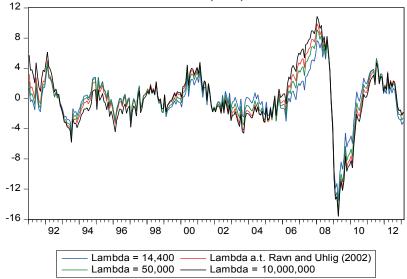
L Trend extraction

The Hodrick-Prescott-Filter (HP)



- An (unconventional) introduction
 - Trend extraction

The Hodrick-Prescott-Filter (HP)



- An (unconventional) introduction
 - Trend extraction

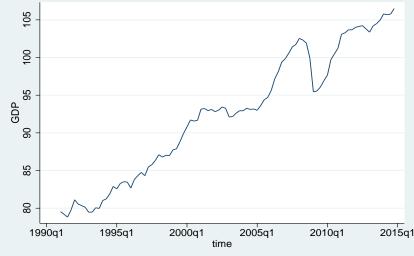
Problems with the HP-Filter

λ is a 'tuning' parameter
 end of sample instability
 ⇒ AR-forecasts

- An (unconventional) introduction
 - Trend extraction

Case study for German GDP: Where are we now?

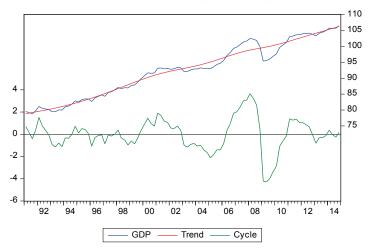
Germany: GDP (seasonal and workday-adjusted, Chain index)



- An (unconventional) introduction
 - L Trend extraction

HP-Filter

Hodrick-Prescott Filter (lambda=1600)



- An (unconventional) introduction
 - Trend extraction

Can we test for a trend?

- Yes and no
- If the trend component significant?
- several trends can be significant
- Trend might be spurious
- Is it plausible that there is a trend?
- A priori information by the researcher
- unit roots

- An (unconventional) introduction
 - Trend extraction

Time series: Industrial Production in Germany (1991:01-2014:02)

- Plot the time series and state which trend adjustment might be appropriate
- Prepare your data set in Excel and estimate various trends in Eviews
- Which trend would you choose?

Cyclical Component

Cyclical Component

is not always present in time series

Is the difference between the observed time series and the estimated trend

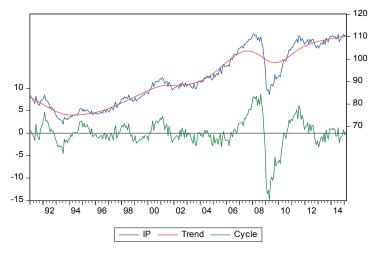
In economics

- characterizes the Business cycle
- different length of cycles (3-5 or 10-15 years)

Cyclical Component

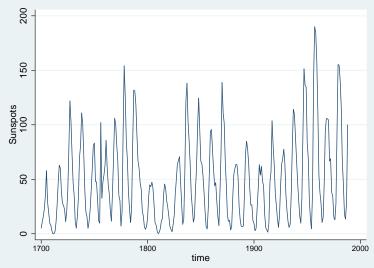
Cyclical Component: Example

Hodrick-Prescott Filter (lambda=14400)



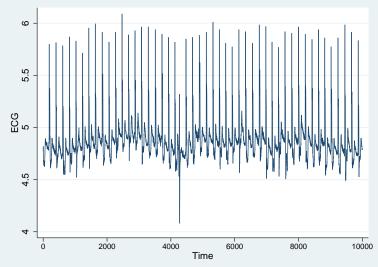
Cyclical Component

Cyclical Component: Example II



Cyclical Component

Cyclical Component: Example III



Cyclical Component

Can we test for a cyclical component?

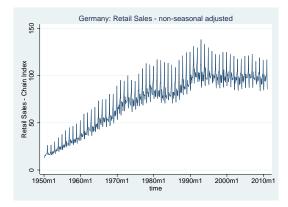
Yes and no

- see the trend section
- Does a cycle make sense?

- An (unconventional) introduction
 - Seasonal Component

Seasonal Component

- similar upswings and downswings in a fixed time interval
- regular pattern, i.e. over a year



- An (unconventional) introduction
 - Seasonal Component

Types of Seasonality

• A:
$$y_t = m_t + S_t + \epsilon_t$$

$$\blacksquare B: y_t = m_t S_t + \epsilon_t$$

• C:
$$y_t = m_t S_t \epsilon_t$$

Model A is additive seasonal, Models B and C contains multiplicative seasonal variation

- An (unconventional) introduction
 - -Seasonal Component

Types of Seasonality

- if the seasonal effect is constant over the seasonal periods ⇒ additive seasonality (Model A)
- if the seasonal effect is proportional to the mean ⇒ multiplicative seasonality (Model A and B)
- in case of multiplicative seasonal models use the logarithmic transformation to make the effect additive

Seasonal Component

Seasonal Adjustment

Simplest Approach to seasonal adjustment:

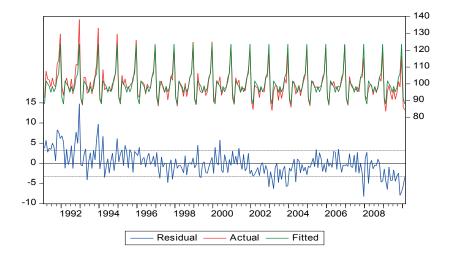
- Run the time series on a set of dummies without a constant (Assumes that the seasonal pattern is constant over time)
- the residuals of this regression are seasonal adjusted
- Example: Monthly data

$$y_t = \sum_{i=1}^{12} \beta_i D_i + \epsilon_t$$
$$\epsilon_t = y_t - \sum_{i=1}^{12} \hat{\beta} D_i$$
$$\psi_{t,sa} = \epsilon_t + mean(y_t)$$

The most well known seasonal adjustment procedure: CENSUS X12 ARIMA

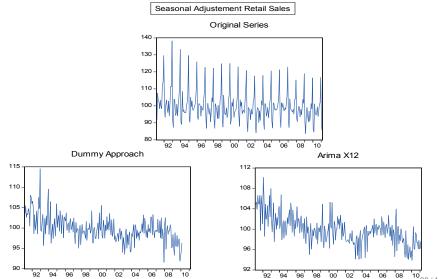
Seasonal Component

Seasonal Adjustment: Dummy Regression Example



Seasonal Component

Seasonal Adjustment: Example



89/442

Seasonal Component

Seasonal Moving Averages

For monthly data one can employ the filter

$$SMA(y_t) = \frac{\frac{1}{2}y_{t-6} + y_{t-5} + y_{t-4} + \ldots + y_{t+6} + \frac{1}{2}y_{t+6}}{12}$$

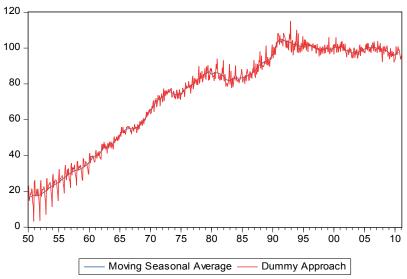
or for quarterly data

$$SMA(y_t) = \frac{\frac{1}{2}y_{t-2} + y_{t-1} + y_t + y_{t+1} + \frac{1}{2}y_{t+2}}{4}$$

Note: The weights add up to one!Standard moving average not applicable

-Seasonal Component

Seasonal Moving Averages: Retail Sales Example



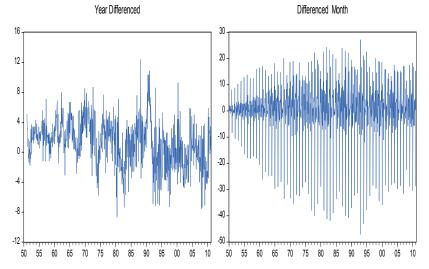
- An (unconventional) introduction
 - Seasonal Component

Seasonal Differencing

- seasonal effect can be eliminated using the a simple linear filter
- in case of a monthly time series: $\Delta_{12}y_t = y_t y_{t-12}$
- in case of a quarterly time series: $\Delta_4 y_t = y_t y_{t-4}$

Seasonal Component

Seasonal Differencing: Retail Sales Example



- An (unconventional) introduction
 - Seasonal Component

Can we test for seasonality?

- Yes and no
- Does seasonality makes sense?
- Compare the seasonal adjusted and unadjusted series
- Iook into the ARIMA X12 output
- Be aware of changing seasonal patterns

-Seasonal Component

Time series: seasonally unadjusted Industrial Production in Germany (1950:01-2011:02)

- Remove the seasonality by a moving seasonal filter
- Try the dummy approach
- Finally, use the ARIMAX12-Approach
- Start the sample in 1991:01 and compare all filters with the full sample

- An (unconventional) introduction
 - L Irregular Component

Irregular Component

- erratic, non-systematic, random "residual" fluctuations due to random shocks
 - in nature
 - due to human behavior
- no observable iterations

L Irregular Component

Can we test for an irregular component?

YES

 several tests available whether the irregular component is a white noise or not

An (unconventional) introduction

Simple Linear Models

White Noise

A process $\{y_t\}$ is called **white noise** if

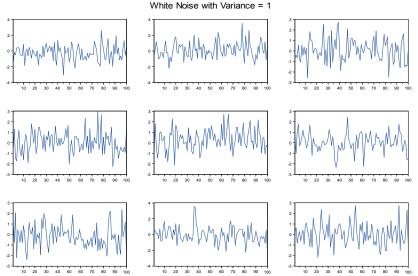
$$\begin{array}{rcl} \mathsf{E}(y_t) &= & 0 \\ \gamma(0) &= & \sigma^2 \\ \gamma(h) &= & 0 \text{ for } |h| > 0 \end{array}$$

 \Rightarrow all y_t 's are uncorrelated. We write: $\{y_t\} \sim WN(0, \sigma^2)$

An (unconventional) introduction

Simple Linear Models

White Noise

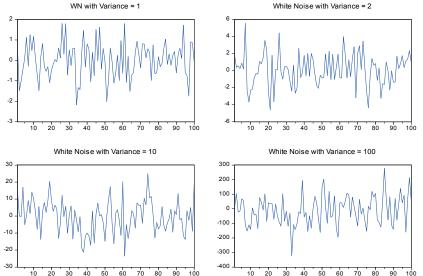


99/442

An (unconventional) introduction

Simple Linear Models

White Noise



100 100/442

Simple Linear Models

Random Walk (with drift)

A simple random walk is given by

$$\mathbf{y}_t = \mathbf{y}_{t-1} + \epsilon_t$$

By adding a constant term

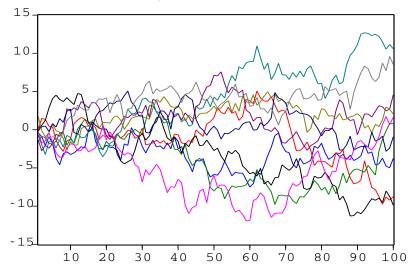
$$y_t = c + y_{t-1} + \epsilon_t$$

we get a random walk with drift. It follows that

$$y_t = ct + \sum_{j=1}^t \epsilon_j$$

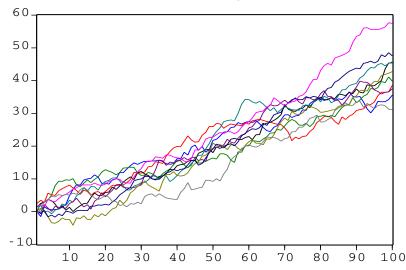
- An (unconventional) introduction
 - Simple Linear Models

Random Walk: Examples



Simple Linear Models

Random Walk with Drift: Examples



An (unconventional) introduction

Simple Linear Models

Fun with Random Walks

- Generate 50 different random walks
- Plot all random walks
- Try different variances and distributions

- An (unconventional) introduction
 - Simple Linear Models

Autoregressive processes

- especially suitable for (short-run) forecasts
- utilizes autocorrelations of lower order
 - 1st order: correlations of successive observations
 - 2nd order: correlations of observations with two periods in between
- Autoregressive model of order p

$$\mathbf{y}_t = \alpha + \beta_1 \mathbf{y}_{t-1} + \beta_2 \mathbf{y}_{t-2} + \ldots + \beta_p \mathbf{y}_{t-p} + \epsilon_t$$

Simple Linear Models

Autoregressive processes

Number of machines produced by a firm

Year	Units		
2003	4		
2004	3		
2005	2		
2006	3		
2007	2		
2008	2		
2009	4		
2010	6		

 \Rightarrow Estimation of an AR model of order 2

$$\mathbf{y}_t = \alpha + \beta_1 \mathbf{y}_{t-1} + \beta_2 \mathbf{y}_{t-2} + \epsilon_t$$

An (unconventional) introduction

Simple Linear Models

Autoregressive processes

Estimation Table:						
	Year	Constant	Уt	<i>Y</i> _{t-1}	<i>Y</i> _{t-2}	
	2003	1	4			
	2004	1	3	4		
	2005	1	2	3	4	
	2006	1	3	2	3	
	2007	1	2	3	2	
	2008	1	2	2	3	
	2009	1	4	2	2	
	2010	1	6	4	2	

 $\Rightarrow \text{OLS}$

$$\hat{y}_t = 3.5 + 0.8125y_{t-1} - 0.9375y_{t-2}$$

Simple Linear Models

Autoregressive processes

Forecasting with an AR(2) model:

$$\hat{y}_t = 3.5 + 0.8125y_{t-1} - 0.9375y_{t-2}$$

$$y_{2011} = 3.5 + 0.8125y_{2010} - 0.9375y_{2009}$$

$$= 3.5 + 0.8125 \cdot 6 - 0.9375 \cdot 4$$

$$= 4.625$$