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Organizational Details and Outline

Introduction

Time series analysis:
Focus: Univariate Time Series and Multivariate Time
Series Analysis.
A lot of theory and many empirical applications with real
data
Organization:

12.04. - 24.05.: Univariate Time Series Analysis, six
lectures (Klaus Wohlrabe)
31.05. - End of Semester: Multivariate Time Series
Analysis (Stefan Mittnik)
15.04. - 27.05. mondays and fridays: Tutorials (Univariate):
Malte Kurz, Elisabeth Heller

⇒ Lectures and Tutorials are complementary!
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Organizational Details and Outline

Tutorials and Script

Script is available at: moodle website (see course website)
Password: armaxgarchx
Script is available at the day before the lecture (noon)
All datasets and programme codes
Tutorial: Mixture between theory and R - Examples
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Organizational Details and Outline

Literature

Shumway and Stoffer (2010): Time Series Analysis and
Its Applications: With R Examples
Box, Jenkins, Reinsel (2008): Time Series Analysis:
Forecasting and Control
Lütkepohl (2005): Applied Time Series Econometrics.
Hamilton (1994): Time Series Analysis.
Lütkepohl (2006): New Introduction to Multiple Time Series
Analysis
Chatham (2003): The Analysis of Time Series: An
Introduction
Neusser (2010): Zeitreihenanalyse in den
Wirtschaftswissenschaften
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Organizational Details and Outline

Examination

Evidence of academic achievements: Two hour written
exam both for the univariate and multivariate part
Schedule for the Univariate Exam: 30/05 (to be
confirmed!!!)
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Organizational Details and Outline

Prerequisites

Basic Knowledge (ideas) of OLS, maximum likelihood
estimation, heteroscedasticity, autocorrelation.
Some algebra

12 / 442



Univariate Time Series Analysis

Organizational Details and Outline

Software

Where you have to pay:
STATA
Eviews
Matlab (Student version available, about 80 Euro)

Free software:
R (www.r-project.org)
Jmulti (www.jmulti) (Based on the book by Lütkepohl
(2005))
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Organizational Details and Outline

Tools used in this lecture

usual standard lecture (as you might expected)
derivations using the whiteboard (not available in the
script!)
live demonstrations (examples) using Excel, Matlab,
Eviews, Stata and JMulti
live programming using Matlab
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Organizational Details and Outline

Outline

Introduction
Linear Models
Modeling ARIMA Processes: The Box-Jenkins Approach
Prediction (Forecasting)
Nonstationarity (Unit Roots)
Financial Time Series
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Organizational Details and Outline

Goals

After the lecture you should be able to ...
... identify time series characteristics and dynamics
... build a time series model
... estimate a model
... check a model
... do forecasts
... understand financial time series
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Organizational Details and Outline

Questions to keep in mind

General Question Follow-up Questions
All types of data

How are the variables de-
fined?

What are the units of measurement? Do the data com-
prise a sample? Ifo so, how was the sample drawn?

What is the relationship be-
tween the data and the phe-
nomenon of interest?

Are the variables direct measurements of the phe-
nomenon of interest, proxies, correlates, etc.?

Who compiled the data? Is the data provider unbiased? Does the provider pos-
sess the skills and resources to enure data quality and
integrity?

What processes generated
the data?

What theory or theories can account for the relationships
between the variables in the data?

Time Series data
What is the frequency of
measurement

Are the variables measured hourly, daily monthly, etc.?
How are gaps in the data (for example, weekends and
holidays) handled?

What is the type of mea-
surement?

Are the data a snapshot at a point in time, an average
over time, a cumulative value over time, etc.?

Are the data seasonally ad-
justed?

If so, what is the adjustment method? Does this method
introduce artifacts in the reported series?
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Univariate Time Series Analysis

An (unconventional) introduction

Goals and methods of time series analysis

The following section partly draws upon Levine, Stephan,
Krehbiel, and Berenson (2002), Statistics for Managers.
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Univariate Time Series Analysis

An (unconventional) introduction

Goals and methods of time series analysis

understanding time series characteristics and dynamics
necessity of (economic) forecasts (for policy)
time series decomposition (trends vs. cycle)
smoothing of time series (filtering out noise)

moving averages
exponential smoothing
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Univariate Time Series Analysis

An (unconventional) introduction

Time series Characteristics

Time Series

A time series is timely ordered sequence of observations.
We denote yt as an observation of a specific variable at
date t .
A time series is list of observations denoted as
{y1, y2, . . . , yT} or in short {yt}Tt=1.
What are typical characteristics of times series?
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An (unconventional) introduction

Time series Characteristics

Economic Time Series: GDP I
80

85
90

95
10

0
10

5
G

D
P

1990q1 1995q1 2000q1 2005q1 2010q1 2015q1
time

Germany: GDP (seasonal and workday-adjusted, Chain index)

24 / 442



Univariate Time Series Analysis

An (unconventional) introduction

Time series Characteristics

Economic Time Series: GDP II
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Univariate Time Series Analysis

An (unconventional) introduction

Time series Characteristics

Economic Time Series: Retail Sales
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An (unconventional) introduction

Time series Characteristics

Economic Time Series: Industrial Production
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An (unconventional) introduction

Time series Characteristics

Economic Time Series: Industrial Production
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Univariate Time Series Analysis

An (unconventional) introduction

Time series Characteristics

Economic Time Series: The German DAX
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Univariate Time Series Analysis

An (unconventional) introduction

Time series Characteristics

Economic Time Series: Gold Price
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Univariate Time Series Analysis

An (unconventional) introduction

Time series Characteristics

Further Time Series: Sunspots
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Univariate Time Series Analysis

An (unconventional) introduction

Time series Characteristics

Further Time Series: ECG
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An (unconventional) introduction

Time series Characteristics

Further Time Series: Simulated Series: AR(1)
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Univariate Time Series Analysis

An (unconventional) introduction

Time series Characteristics

Further Time Series: Chaos or a real time series?
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Univariate Time Series Analysis

An (unconventional) introduction

Time series Characteristics

Further Time Series: Chaos?
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Univariate Time Series Analysis

An (unconventional) introduction

Time series Characteristics

Characteristics of Time series

Trends
Periodicity (cyclicality)
Seasonality
Volatility Clustering
Nonlinearities
Chaos
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Univariate Time Series Analysis

An (unconventional) introduction

Necessity of (economic) forecasts

Necessity of (economic) Forecasts

For political actions and budget control governments need
forecasts for macroeconomic variables
GDP, interest rates, unemployment rate, tax revenues etc.
marketing need forecasts for sales related variables

future sales
product demand (price dependent)
changes in preferences of consumers
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Univariate Time Series Analysis

An (unconventional) introduction

Necessity of (economic) forecasts

Necessity of (economic) Forecasts

retail sales company need forecasts to optimize
warehousing and employment of staff
firms need to forecasts cash-flows in order to account of
illiquidity phases or insolvency
university administrations needs forecasts of the number of
students for calculation of student fees, staff planning,
space organization
migration flows
house prices
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An (unconventional) introduction

Components of time series data

Time series decomposition

Time Series 

Trend Cyclical 

Seasonal Irregular 
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Univariate Time Series Analysis

An (unconventional) introduction

Components of time series data

Time series decomposition

Classical additive decomposition:

yt = dt + ct + st + εt (1)

dt trend component (deterministic, almost constant over
time)
ct cyclical component (deterministic, periodic, medium
term horizons)
st seasonal component (deterministic, periodic; more than
one possible)
εt irregular component (stochastic, stationary)
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An (unconventional) introduction

Components of time series data

Time series decomposition

Goal:
Extraction of components dt , ct and st

The irregular component

εt = yt − dt − ct − st

should be stationary and ideally white noise.
Main task is then to model the components appropriately.
Data transformation maybe necessary to account for
heteroscedasticity (e.g. log-transformation to stabilize
seasonal fluctuations)
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An (unconventional) introduction

Components of time series data

Time series decomposition

The multiplicative model:

yt = dt · ct · st · εt (2)

will be treated in the tutorial.
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Univariate Time Series Analysis

An (unconventional) introduction

Some simple filters

Simple Filters

series = signal + noise (3)

The statistician would says

series = fit + residual (4)

At a later stage:

series = model + errors (5)

⇒ mathematical function plus a probability distribution of
the error term

43 / 442



Univariate Time Series Analysis

An (unconventional) introduction

Some simple filters

Linear Filters

A linear filter converts one times series (xT ) into another (yt ) by
the linear operation

yt =
+s∑

r=−q

ar xt+r

where ar is a set of weights. In order to smooth local fluctuation
one should chose the weight such that∑

ar = 1
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An (unconventional) introduction

Some simple filters

The idea

yt = f (t) + εt (6)

We assume that f (t) and εt are well-behaved.
Consider N observations at time tj which are reasonably close
in time to ti . One possible smoother ist

y∗ti = 1/N
∑

ytj = 1/N
∑

f (tj) + 1/N
∑

εtj ≈ f (ti) + 1/N
∑

εtj
(7)

if εt ∼ N(0, σ2), the variance of the sum of the residuals is
σ2/N2.
The smoother is characterized by

span, the number of adjacent points included in the
calculation
type of estimator (median, mean, weighted mean etc.)
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Univariate Time Series Analysis

An (unconventional) introduction

Some simple filters

Moving Average

Used for time series smoothing.
Consists of a series of arithmetic means.
Result depends on the window size L (number of included
periods to calculate the mean).
In order to smooth the cyclical component, L should
exceed the cycle length
L should be uneven (avoids another cyclical component)
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Univariate Time Series Analysis

An (unconventional) introduction

Some simple filters

Moving Average

MA(yt ) =
1

2q + 1

+q∑
r=−q

yt+r

L = 2q + 1

where the weights are given by

ar =
1

2q + 1
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Univariate Time Series Analysis

An (unconventional) introduction

Some simple filters

Moving Average

Example: Moving Average (MA) over 3 Periods
First MA term: MA2(3) = y1+y2+y3

3

Second MA term: MA3(3) = y2+y3+y4
3
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An (unconventional) introduction

Some simple filters

Moving Average
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An (unconventional) introduction

Some simple filters

Moving Average
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⇒ the larger L the smoother and shorter the filtered series
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Univariate Time Series Analysis

An (unconventional) introduction

Some simple filters

EXAMPLE

Generate a random time series (normally distributed) with
T = 20

Quick and dirty: Moving Average with Excel
Nice and Slow: Write a simple Matlab program for
calculating a moving average of order L
Additional Task: Increase the number of observations to
T = 100, include a linear time trend and calculate different
MAs
Variation: Include some outliers and see how the
calculations change.
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Univariate Time Series Analysis

An (unconventional) introduction

Some simple filters

Exponential Smoothing

weighted moving averages
latest observation has the highest weight compared to the
previous periods

ŷt = wyt + (1− w)ŷt−1

Repeated substitution gives:

ŷt = w
t−1∑
s=0

(1− w)syt−s

⇒ that’s why it is called exponential smoothing, forecasts are
the weighted average of past observations where the weights
decline exponentially with time.
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Univariate Time Series Analysis

An (unconventional) introduction

Some simple filters

Exponential Smoothing

Is used for smoothing and short–term forecasting
Choice of w :

subjective or through calibration
numbers between 0 and 1
Close to 0 for smoothing out unpleasant cyclical or irregular
components
Close to 1 for forecasting
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An (unconventional) introduction

Some simple filters

Exponential Smoothing

ŷt = wyt + (1− w)ŷt−1 w = 0.2
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An (unconventional) introduction

Some simple filters

Exponential Smoothing
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An (unconventional) introduction

Trend extraction

Trend Component

positive or negative trend
observed over a longer time horizon
linear vs. non–linear trend
smooth vs. non–smooth trends
⇒ trend is ’unobserved’ in reality
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Univariate Time Series Analysis

An (unconventional) introduction

Trend extraction

Trend Component: Example
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Univariate Time Series Analysis

An (unconventional) introduction

Trend extraction

Why is trend extraction so important?

The case of detrending GDP
trend GDP is denoted as potential output
The difference between trend and actual GDP is called the
output gap
Is an economy below or above the current trend? (Or is the
output gap positive or negative?)
⇒ consequences for economic policy (wages, prices etc.)
Trend extraction can be highly controversial!
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Univariate Time Series Analysis

An (unconventional) introduction

Trend extraction

Linear Trend Model

Year Time (xt ) Turnover (yt )
05 1 2
06 2 5
07 3 2
08 4 2
09 5 7
10 6 6

yt = α + βxt
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Univariate Time Series Analysis

An (unconventional) introduction

Trend extraction

Linear Trend Model

Estimation with OLS

ŷt = α̂ + β̂xt = 1.4 + 0.743xt

Forecast for 2011:

ŷ2011 = 1.4 + 0.743 · 7 = 6.6

60 / 442



Univariate Time Series Analysis

An (unconventional) introduction

Trend extraction

Quadratic Trend Model

Year Time (xt ) Time2 (x2
t ) Turnover (yt )

05 1 1 2
06 2 4 5
07 3 9 2
08 4 16 2
09 5 25 7
10 6 36 6

yt = α + β1xt + β2x2
t
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Univariate Time Series Analysis

An (unconventional) introduction

Trend extraction

Quadratic Trend Model

ŷt = α̂ + β̂xt + β̂2x2
t = 3.4− 0.757143xt + 0.214286x2

t

Forecast for 2011:

ŷ2011 = 3.4− 0.757143 · 7 + 0.214286 · 72 = 8.6
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Univariate Time Series Analysis

An (unconventional) introduction

Trend extraction

Exponential Trend Model
Year Time (xt ) Turnover (yt )
05 1 2
06 2 5
07 3 2
08 4 2
09 5 7
10 6 6

yt = αβxt
1

⇒ Non-linear Least Squares (NLS) or
Linearize the model and use OLS:

log yt = logα + log(β1)xt

⇒ ’relog’ the model
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Univariate Time Series Analysis

An (unconventional) introduction

Trend extraction

Exponential Trend Model

Estimation via NLS:

ŷt = α̂ + β̂1
xt

= 0.08 · 1.93xt

Forecast for 2011:

ŷ2011 = 0.08 · 1.937 = 15.4
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Univariate Time Series Analysis

An (unconventional) introduction

Trend extraction

Logarithmic Trend Model

Year Time (xt ) log(Time) Turnover (yt )
05 1 log(1) 2
06 2 log(2) 5
07 3 log(3) 2
08 4 log(4) 2
09 5 log(5) 7
10 6 log(6) 6

Logarithmic Trend:
yt = α + β1 log xt
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Univariate Time Series Analysis

An (unconventional) introduction

Trend extraction

Logarithmic Trend Model

Estimation via OLS:

ŷt = α̂ + β̂1 log xt = 1.934675 + 1.883489 · log yt

Forecast for 2011:

Ŷ2011 = 1.934675 + 1.883489 · log(7) = 5.6
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Univariate Time Series Analysis

An (unconventional) introduction

Trend extraction

Comparison of different trend models
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Exponential Trend
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Univariate Time Series Analysis

An (unconventional) introduction

Trend extraction

Detrending GDP
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Univariate Time Series Analysis

An (unconventional) introduction

Trend extraction

Which trend model to choose?
Linear Trend model, if the first differences

yt − yt−1

are stationary
Quadratic trend model, if the second differences

(yt − yt−1)− (yt−1 − yt−2)

are stationary
Logarithmic trend model, if the relative differences

yt − yt−1

yt

are stationary
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An (unconventional) introduction

Trend extraction

The Hodrick-Prescott-Filter (HP)

The HP extracts a flexible trend. The filter is given by

min
µt

T∑
t=1

[(yt − µt )
2 + λ

T−1∑
t=2

{(µt+1 − µt )− (µt − µt−1)}2] (8)

where µt is the flexible trend and λ a smoothness parameter
chosen by the researcher.

As λ approaches infinity we obtain a linear trend.
Currently the most popular filter in economics.
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Univariate Time Series Analysis

An (unconventional) introduction

Trend extraction

The Hodrick-Prescott-Filter (HP)

How to choose λ?
Hodrick-Prescot (1997) recommend:

λ =


100 for annual data
1600 for quarterly data
14400 for monthly data

(9)

Alternative: Ravn and Uhlig (2002)
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Univariate Time Series Analysis

An (unconventional) introduction

Trend extraction

The Hodrick-Prescott-Filter (HP)
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An (unconventional) introduction

Trend extraction

The Hodrick-Prescott-Filter (HP)
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Univariate Time Series Analysis

An (unconventional) introduction

Trend extraction

Problems with the HP-Filter

λ is a ’tuning’ parameter
end of sample instability
⇒ AR-forecasts
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Univariate Time Series Analysis

An (unconventional) introduction

Trend extraction

Case study for German GDP: Where are we now?
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Germany: GDP (seasonal and workday-adjusted, Chain index)
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Univariate Time Series Analysis

An (unconventional) introduction

Trend extraction

HP-Filter
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Univariate Time Series Analysis

An (unconventional) introduction

Trend extraction

Can we test for a trend?

Yes and no
If the trend component significant?
several trends can be significant
Trend might be spurious
Is it plausible that there is a trend?
A priori information by the researcher
unit roots
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Univariate Time Series Analysis

An (unconventional) introduction

Trend extraction

EXAMPLE

Time series: Industrial Production in Germany
(1991:01-2014:02)

Plot the time series and state which trend adjustment
might be appropriate
Prepare your data set in Excel and estimate various trends
in Eviews
Which trend would you choose?
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Univariate Time Series Analysis

An (unconventional) introduction

Cyclical Component

Cyclical Component

is not always present in time series
Is the difference between the observed time series and the
estimated trend

In economics
characterizes the Business cycle
different length of cycles (3-5 or 10-15 years)
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An (unconventional) introduction

Cyclical Component

Cyclical Component: Example
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Cyclical Component

Cyclical Component: Example II
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Cyclical Component

Cyclical Component: Example III
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Univariate Time Series Analysis

An (unconventional) introduction

Cyclical Component

Can we test for a cyclical component?

Yes and no
see the trend section
Does a cycle make sense?
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Univariate Time Series Analysis

An (unconventional) introduction

Seasonal Component

Seasonal Component
similar upswings and downswings in a fixed time interval
regular pattern, i.e. over a year
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Germany: Retail Sales - non-seasonal adjusted
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Univariate Time Series Analysis

An (unconventional) introduction

Seasonal Component

Types of Seasonality

A: yt = mt + St + εt

B: yt = mtSt + εt

C: yt = mtStεt

Model A is additive seasonal, Models B and C contains
multiplicative seasonal variation
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Univariate Time Series Analysis

An (unconventional) introduction

Seasonal Component

Types of Seasonality

if the seasonal effect is constant over the seasonal periods
⇒ additive seasonality (Model A)
if the seasonal effect is proportional to the mean
⇒ multiplicative seasonality (Model A and B)
in case of multiplicative seasonal models use the
logarithmic transformation to make the effect additive
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An (unconventional) introduction

Seasonal Component

Seasonal Adjustment
Simplest Approach to seasonal adjustment:

Run the time series on a set of dummies without a constant
(Assumes that the seasonal pattern is constant over time)
the residuals of this regression are seasonal adjusted
Example: Monthly data

yt =
12∑

i=1

βiDi + εt

εt = yt −
12∑

i=1

β̂Di

yt ,sa = εt + mean(yt )

The most well known seasonal adjustment procedure:
CENSUS X12 ARIMA
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Univariate Time Series Analysis

An (unconventional) introduction

Seasonal Component

Seasonal Adjustment: Dummy Regression Example
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Univariate Time Series Analysis

An (unconventional) introduction

Seasonal Component

Seasonal Adjustment: Example
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Univariate Time Series Analysis

An (unconventional) introduction

Seasonal Component

Seasonal Moving Averages

For monthly data one can employ the filter

SMA(yt ) =
1
2yt−6 + yt−5 + yt−4 + . . .+ yt+6 + 1

2yt+6

12

or for quarterly data

SMA(yt ) =
1
2yt−2 + yt−1 + yt + yt+1 + 1

2yt+2

4

Note: The weights add up to one!
Standard moving average not applicable
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Univariate Time Series Analysis

An (unconventional) introduction

Seasonal Component

Seasonal Moving Averages: Retail Sales Example
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Univariate Time Series Analysis

An (unconventional) introduction

Seasonal Component

Seasonal Differencing

seasonal effect can be eliminated using the a simple linear
filter
in case of a monthly time series: ∆12yt = yt − yt−12

in case of a quarterly time series: ∆4yt = yt − yt−4
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Univariate Time Series Analysis

An (unconventional) introduction

Seasonal Component

Seasonal Differencing: Retail Sales Example
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Univariate Time Series Analysis

An (unconventional) introduction

Seasonal Component

Can we test for seasonality?

Yes and no
Does seasonality makes sense?
Compare the seasonal adjusted and unadjusted series
look into the ARIMA X12 output
Be aware of changing seasonal patterns
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Univariate Time Series Analysis

An (unconventional) introduction

Seasonal Component

EXAMPLE

Time series: seasonally unadjusted Industrial Production in
Germany (1950:01-2011:02)

Remove the seasonality by a moving seasonal filter
Try the dummy approach
Finally, use the ARIMAX12-Approach
Start the sample in 1991:01 and compare all filters with the
full sample
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Univariate Time Series Analysis

An (unconventional) introduction

Irregular Component

Irregular Component

erratic, non-systematic, random "residual" fluctuations due
to random shocks

in nature
due to human behavior

no observable iterations
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Univariate Time Series Analysis

An (unconventional) introduction

Irregular Component

Can we test for an irregular component?

YES
several tests available whether the irregular component is
a white noise or not
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Univariate Time Series Analysis

An (unconventional) introduction

Simple Linear Models

White Noise

A process {yt} is called white noise if

E(yt ) = 0
γ(0) = σ2

γ(h) = 0 for |h| > 0

⇒ all yt ’s are uncorrelated. We write: {yt} ∼WN(0, σ2)

98 / 442



Univariate Time Series Analysis

An (unconventional) introduction

Simple Linear Models

White Noise
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Univariate Time Series Analysis

An (unconventional) introduction

Simple Linear Models

White Noise
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An (unconventional) introduction

Simple Linear Models

Random Walk (with drift)

A simple random walk is given by

yt = yt−1 + εt

By adding a constant term

yt = c + yt−1 + εt

we get a random walk with drift. It follows that

yt = ct +
t∑

j=1

εj
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An (unconventional) introduction

Simple Linear Models

Random Walk: Examples
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Univariate Time Series Analysis

An (unconventional) introduction

Simple Linear Models

Random Walk with Drift: Examples
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Univariate Time Series Analysis

An (unconventional) introduction

Simple Linear Models

EXAMPLE

Fun with Random Walks
Generate 50 different random walks
Plot all random walks
Try different variances and distributions
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An (unconventional) introduction

Simple Linear Models

Autoregressive processes

especially suitable for (short-run) forecasts
utilizes autocorrelations of lower order

1st order: correlations of successive observations
2nd order: correlations of observations with two periods in
between

Autoregressive model of order p

yt = α + β1yt−1 + β2yt−2 + . . .+ βpyt−p + εt
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Simple Linear Models

Autoregressive processes
Number of machines produced by a firm

Year Units
2003 4
2004 3
2005 2
2006 3
2007 2
2008 2
2009 4
2010 6

⇒ Estimation of an AR model of order 2

yt = α + β1yt−1 + β2yt−2 + εt
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Simple Linear Models

Autoregressive processes

Estimation Table:
Year Constant yt yt−1 yt−2
2003 1 4
2004 1 3 4
2005 1 2 3 4
2006 1 3 2 3
2007 1 2 3 2
2008 1 2 2 3
2009 1 4 2 2
2010 1 6 4 2

⇒ OLS
ŷt = 3.5 + 0.8125yt−1 − 0.9375yt−2
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Simple Linear Models

Autoregressive processes

Forecasting with an AR(2) model:

ŷt = 3.5 + 0.8125yt−1 − 0.9375yt−2

y2011 = 3.5 + 0.8125y2010 − 0.9375y2009

= 3.5 + 0.8125 · 6− 0.9375 · 4
= 4.625
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