Univariate Time Series Analysis

Klaus Wohlrabe¹ and Stefan Mittnik

¹ Ifo Institute for Economic Research, wohlrabe@ifo.de

SS 2017

- 1 Organizational Details and Outline
- 2 An (unconventional) introduction
 - Time series Characteristics
 - Necessity of (economic) forecasts
 - Components of time series data
 - Some simple filters
 - Trend extraction
 - Cyclical Component
 - Seasonal Component
 - Irregular Component
 - Simple Linear Models
- 3 A more formal introduction
- 4 (Univariate) Linear Models
 - Notation and Terminology
 - Stationarity of ARMA Processes
 - Identification Tools

Organizational Details and Outline

Table of content I

1 Organizational Details and Outline

- 2 An (unconventional) introduction
 - Time series Characteristics
 - Necessity of (economic) forecasts
 - Components of time series data
 - Some simple filters
 - Trend extraction
 - Cyclical Component
 - Seasonal Component
 - Irregular Component
 - Simple Linear Models
- 3 A more formal introduction
- 4 (Univariate) Linear Models
 - Notation and Terminology

Univariate Time Series Analysis

Organizational Details and Outline

Table of content II

Stationarity of ARMA Processes

Identification Tools

Introduction

Time series analysis:

- Focus: Univariate Time Series and Multivariate Time Series Analysis.
- A lot of theory and many empirical applications with real data
- Organization:
 - 25.04. 30.05.: Univariate Time Series Analysis, six lectures (Klaus Wohlrabe)
 - 28.04. 02.06.: Fridays: Tutorials with Malte Kurz
 - 13.06. End of Semester: Multivariate Time Series Analysis (Stefan Mittnik)

■ ⇒ Lectures and Tutorials are complementary!

Organizational Details and Outline

Tutorials and Script

- Script is available at: moodle website (see course website)
- Password: armaxgarchx
- Script is available at the day before the lecture (noon)
- All datasets and programme codes
- Tutorial: Mixture between theory and R Examples

Literature

- Shumway and Stoffer (2010): Time Series Analysis and Its Applications: With R Examples
- Box, Jenkins, Reinsel (2008): Time Series Analysis: Forecasting and Control
- Lütkepohl (2005): Applied Time Series Econometrics.
- Hamilton (1994): Time Series Analysis.
- Lütkepohl (2006): New Introduction to Multiple Time Series Analysis
- Chatham (2003): The Analysis of Time Series: An Introduction
- Neusser (2010): Zeitreihenanalyse in den Wirtschaftswissenschaften

Organizational Details and Outline

- Evidence of academic achievements: Two hour written exam both for the univariate and multivariate part
- Schedule for the Univariate Exam: tba.

Organizational Details and Outline

- Basic Knowledge (ideas) of OLS, maximum likelihood estimation, heteroscedasticity, autocorrelation.
- Some algebra

Crganizational Details and Outline

Software

Where you have to pay:

- STATA
- Eviews

Matlab (Student version available, about 80 Euro)

Free software:

- R (www.r-project.org)
- Jmulti (www.jmulti.org) (Based on the book by Lütkepohl (2005))

Organizational Details and Outline

Tools used in this lecture

- standard approach (as you might expected)
- derivations using the whiteboard (not available in the script!)
- live demonstrations (examples) using Excel, Matlab, Eviews, Stata and JMulti
- live programming using Matlab

Crganizational Details and Outline

Outline

Introduction

- Linear Models
- Modeling ARIMA Processes: The Box-Jenkins Approach
- Prediction (Forecasting)
- Nonstationarity (Unit Roots)
- Financial Time Series

Organizational Details and Outline

Goals

After the lecture you should be able to ...

- ... identify time series characteristics and dynamics
- ... build a time series model
- ... estimate a model
- … check a model
- ... do forecasts
- ... understand financial time series

Questions to keep in mind

General Question	Follow-up Questions
All types of data	
How are the variables de- fined?	What are the units of measurement? Do the data com- prise a sample? If so, how was the sample drawn?
What is the relationship be- tween the data and the phe- nomenon of interest?	Are the variables direct measurements of the phe- nomenon of interest, proxies, correlates, etc.?
Who compiled the data?	Is the data provider unbiased? Does the provider pos- sess the skills and resources to enure data quality and integrity?
What processes generated the data?	What theory or theories can account for the relationships between the variables in the data?
Time Series data	
What is the frequency of measurement	Are the variables measured hourly, daily monthly, etc.? How are gaps in the data (for example, weekends and holidays) handled?
What is the type of mea- surement?	Are the data a snapshot at a point in time, an average over time, a cumulative value over time, etc.?
Are the data seasonally ad- justed?	If so, what is the adjustment method? Does this method introduce artifacts in the reported series?

Table of content I

Organizational Details and Outline

2 An (unconventional) introduction

- Time series Characteristics
- Necessity of (economic) forecasts
- Components of time series data
- Some simple filters
- Trend extraction
- Cyclical Component
- Seasonal Component
- Irregular Component
- Simple Linear Models
- 3 A more formal introduction
- 4 (Univariate) Linear Models
 - Notation and Terminology

Univariate Time Series Analysis

An (unconventional) introduction

Table of content II

Stationarity of ARMA Processes

Identification Tools

Goals and methods of time series analysis

The following section partly draws upon Levine, Stephan, Krehbiel, and Berenson (2002), *Statistics for Managers*.

Goals and methods of time series analysis

- understanding time series characteristics and dynamics
- necessity of (economic) forecasts (for policy)
- time series decomposition (trends vs. cycle)
- smoothing of time series (filtering out noise)
 - moving averages
 - exponential smoothing

- An (unconventional) introduction
 - └─ Time series Characteristics

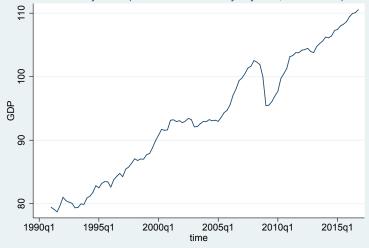
Time Series

- A time series is timely ordered sequence of observations.
- We denote y_t as an observation of a specific variable at date t.
- A time series is list of observations denoted as $\{y_1, y_2, \dots, y_T\}$ or in short $\{y_t\}_{t=1}^T$.
- What are typical characteristics of times series?

- An (unconventional) introduction
 - L Time series Characteristics

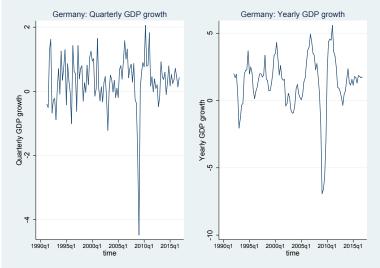
Economic Time Series: GDP I

Germany: GDP (seasonal and workday-adjusted, Chain index)



- An (unconventional) introduction
 - L Time series Characteristics

Economic Time Series: GDP II



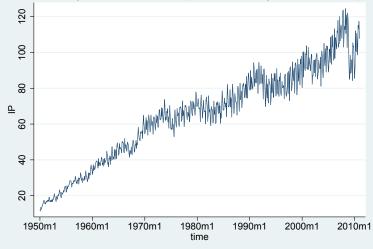
L Time series Characteristics

Economic Time Series: Retail Sales

L Time series Characteristics

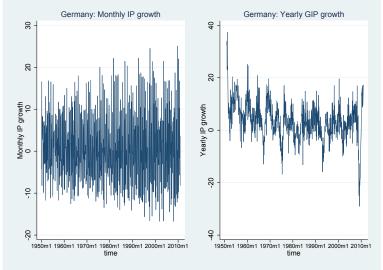
Economic Time Series: Industrial Production

Germany: Industrial Production (non-seasonal adjusted, Chain index)



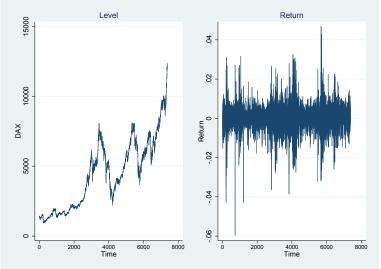
- An (unconventional) introduction
 - └─ Time series Characteristics

Economic Time Series: Industrial Production



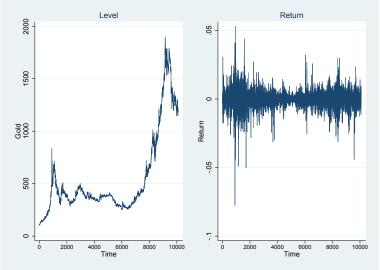
- An (unconventional) introduction
 - L Time series Characteristics

Economic Time Series: The German DAX



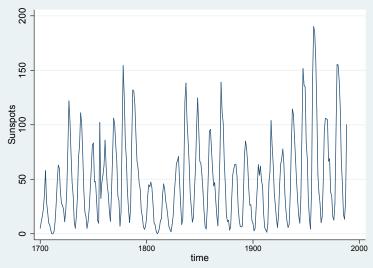
L Time series Characteristics

Economic Time Series: Gold Price



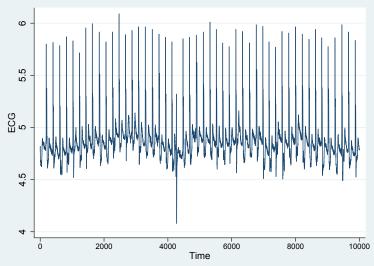
L Time series Characteristics

Further Time Series: Sunspots



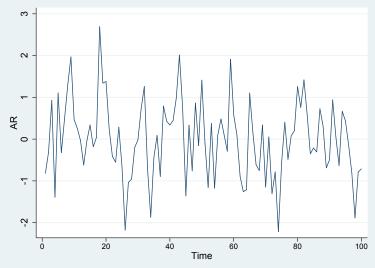
- An (unconventional) introduction
 - L Time series Characteristics

Further Time Series: ECG



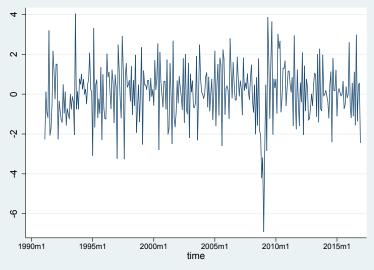
L Time series Characteristics

Further Time Series: Simulated Series: AR(1)



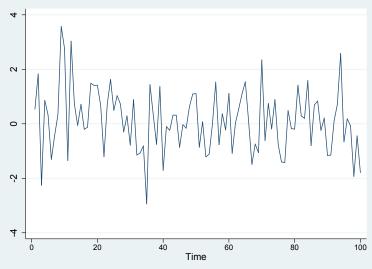
L Time series Characteristics

Further Time Series: Chaos or a real time series?



- An (unconventional) introduction
 - L Time series Characteristics

Further Time Series: Chaos?



L Time series Characteristics

Characteristics of Time series

Trends

- Periodicity (cyclicality)
- Seasonality
- Volatility Clustering
- Nonlinearities
- Chaos

└─ Necessity of (economic) forecasts

Necessity of (economic) Forecasts

- For political actions and budget control governments need forecasts for macroeconomic variables
 GDP, interest rates, unemployment rate, tax revenues etc.
- marketing need forecasts for sales related variables
 - future sales
 - product demand (price dependent)
 - changes in preferences of consumers

└─ Necessity of (economic) forecasts

Necessity of (economic) Forecasts

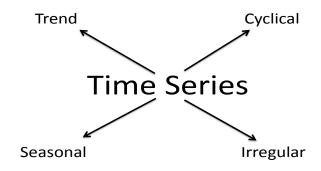
- retail sales company need forecasts to optimize warehousing and employment of staff
- firms need to forecasts cash-flows in order to account of illiquidity phases or insolvency
- university administrations needs forecasts of the number of students for calculation of student fees, staff planning, space organization
- migration flows
- house prices

Univariate Time Series Analysis

An (unconventional) introduction

Components of time series data

Time series decomposition



Components of time series data

Time series decomposition

Classical additive decomposition:

$$y_t = d_t + c_t + s_t + \epsilon_t \tag{1}$$

- *d_t* trend component (deterministic, almost constant over time)
- *c_t* cyclical component (deterministic, periodic, medium term horizons)
- *s_t* seasonal component (deterministic, periodic; more than one possible)
- ϵ_t irregular component (stochastic, stationary)

Components of time series data

Time series decomposition

Goal:

Extraction of components d_t , c_t and s_t

The irregular component

$$\epsilon_t = y_t - d_t - c_t - s_t$$

should be stationary and ideally white noise.

- Main task is then to model the components appropriately.
- Data transformation maybe necessary to account for heteroscedasticity (e.g. log-transformation to stabilize seasonal fluctuations)

An (unconventional) introduction

Components of time series data

Time series decomposition

The multiplicative model:

$$y_t = d_t \cdot c_t \cdot s_t \cdot \epsilon_t \tag{2}$$

will be treated in the tutorial.

An (unconventional) introduction

Some simple filters

Simple Filters

$$series = signal + noise$$
 (3)

The statistician would says

$$series = fit + residual$$
 (4)

At a later stage:

$$series = model + errors$$
 (5)

 \Rightarrow mathematical function plus a probability distribution of the error term

└─ Some simple filters

Linear Filters

A linear filter converts one times series (x_T) into another (y_t) by the linear operation

$$y_t = \sum_{r=-q}^{+s} a_r x_{t+r}$$

where a_r is a set of weights. In order to smooth local fluctuation one should chose the weight such that

$$\sum a_r = 1$$

Some simple filters

The idea

$$y_t = f(t) + \epsilon_t \tag{6}$$

We assume that f(t) and ϵ_t are well-behaved. Consider *N* observations at time t_j which are reasonably close in time to t_i . One possible smoother is

$$y_{t_i}^* = 1/N \sum y_{t_j} = 1/N \sum f(t_j) + 1/N \sum \epsilon_{t_j} \approx f(t_i) + 1/N \sum \epsilon_{t_j}$$
(7)

if $\epsilon_t \sim N(0, \sigma^2)$, the variance of the sum of the residuals is σ^2/N^2 .

The smoother is characterized by

- span, the number of adjacent points included in the calculation
- type of estimator (median, mean, weighted mean etc.)

- An (unconventional) introduction
 - └- Some simple filters

Moving Average

- Used for time series smoothing.
- Consists of a series of arithmetic means.
- Result depends on the window size L (number of included periods to calculate the mean).
- In order to smooth the cyclical component, L should exceed the cycle length
- L should be uneven (avoids another cyclical component)

An (unconventional) introduction

└─ Some simple filters

Moving Average

$$MA(y_t) = \frac{1}{2q+1} \sum_{r=-q}^{+q} y_{t+r}$$
$$L = 2q+1$$

where the weights are given by

$$a_r=\frac{1}{2q+1}$$

An (unconventional) introduction

└─ Some simple filters

Moving Average

Two-Sided MA:

$$MA(y_t) = \frac{1}{2q+1} \sum_{r=-q}^{+q} y_{t+r}$$

One-sided MA:

$$MA(y_t) = \frac{1}{q+1} \sum_{r=0}^{q} y_{t-r}$$

- An (unconventional) introduction
 - Some simple filters

Moving Average

Example: Moving Average (MA) over 3 Periods

First MA term: $MA_2(3) = \frac{y_1 + y_2 + y_3}{3}$

Second MA term: $MA_3(3) = \frac{y_2 + y_3 + y_4}{3}$

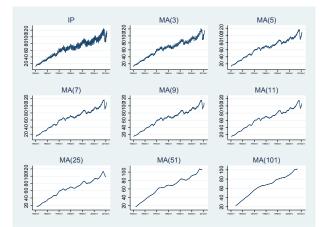
- An (unconventional) introduction
 - Some simple filters

Moving Average

Year	Projects	MA(3) L=3
2005	2	
2006	5 -	3
2007	2	3
2008	2	3.67
2009	7	5
2010	6	

- An (unconventional) introduction
 - Some simple filters

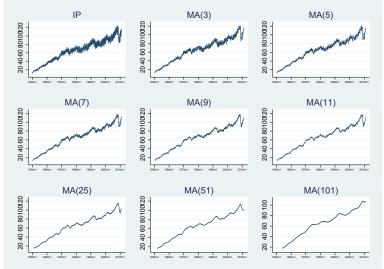
Moving Average Example - TWO-sided



 \Rightarrow the larger *L* the smoother and shorter the filtered series

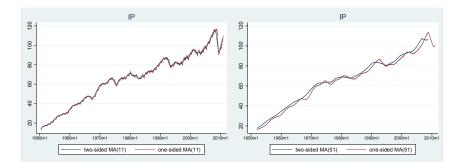
- An (unconventional) introduction
 - Some simple filters

Moving Average Example - One-sided



Some simple filters

Moving Average Example - Comparison of One- and two-sided



- An (unconventional) introduction
 - Some simple filters

EXAMPLE

Generate a random time series (normally distributed) with $\mathcal{T}=20$

- Quick and dirty: Moving Average with Excel
- Nice and Slow: Write a simple Matlab program for calculating a moving average of order L
- Additional Task: Increase the number of observations to *T* = 100, include a linear time trend and calculate different MAs
- Variation: Include some outliers and see how the calculations change.

- An (unconventional) introduction
 - └─ Some simple filters

- weighted moving averages
- latest observation has the highest weight compared to the previous periods

$$\hat{y}_t = wy_t + (1 - w)\hat{y}_{t-1}$$

Repeated substitution gives:

$$\hat{y}_t = w \sum_{s=0}^{t-1} (1-w)^s \hat{y}_{t-s}$$

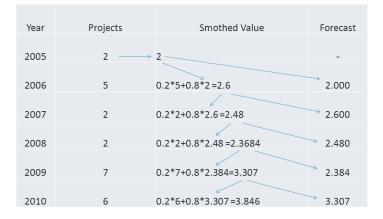
 \Rightarrow that's why it is called exponential smoothing, forecasts are the weighted average of past observations where the weights decline exponentially with time.

- An (unconventional) introduction
 - └─ Some simple filters

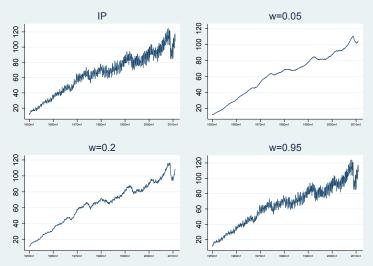
- Is used for smoothing and short-term forecasting
- Choice of w:
 - subjective or through calibration
 - numbers between 0 and 1 Close to 0 for smoothing out unpleasant cyclical or irregular components
 - Close to 1 for forecasting

- An (unconventional) introduction
 - └─ Some simple filters

$$\hat{y}_t = wy_t + (1 - w)\hat{y}_{t-1}$$
 $w = 0.2$



- An (unconventional) introduction
 - └─ Some simple filters



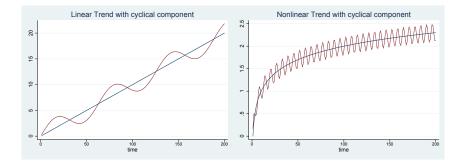
- An (unconventional) introduction
 - Trend extraction

Trend Component

- positive or negative trend
- observed over a longer time horizon
- linear vs. non–linear trend
- smooth vs. non-smooth trends
- \blacksquare \Rightarrow trend is 'unobserved' in reality

- An (unconventional) introduction
 - L Trend extraction

Trend Component: Example



- An (unconventional) introduction
 - Trend extraction

Why is trend extraction so important?

The case of detrending GDP

- trend GDP is denoted as potential output
- The difference between trend and actual GDP is called the output gap
- Is an economy below or above the current trend? (Or is the output gap positive or negative?)
 - \Rightarrow consequences for economic policy (wages, prices etc.)
- Trend extraction can be highly controversial!

- An (unconventional) introduction
 - L Trend extraction

Linear Trend Model

Year	Time (x_t)	Turnover (y_t)
05	1	2
06	2	5
07	3	2
08	4	2
09	5	7
10	6	6

$$\mathbf{y}_t = \alpha + \beta \mathbf{x}_t$$

An (unconventional) introduction

L Trend extraction

Linear Trend Model

Estimation with OLS

$$\hat{y}_t = \hat{\alpha} + \hat{\beta} x_t = 1.4 + 0.743 x_t$$

Forecast for 2011:

$$\hat{y}_{2011} = 1.4 + 0.743 \cdot 7 = 6.6$$

- An (unconventional) introduction
 - Trend extraction

Quadratic Trend Model

Year	Time (x_t)	Time ² (x_t^2)	Turnover (y_t)
05	1	1	2
06	2	4	5
07	3	9	2
08	4	16	2
09	5	25	7
10	6	36	6

$$\mathbf{y}_t = \alpha + \beta_1 \mathbf{x}_t + \beta_2 \mathbf{x}_t^2$$

An (unconventional) introduction

Trend extraction

Quadratic Trend Model

$$\hat{y}_t = \hat{\alpha} + \hat{\beta}x_t + \hat{\beta}_2x_t^2 = 3.4 - 0.757143x_t + 0.214286x_t^2$$

Forecast for 2011:

 $\hat{y}_{2011} = 3.4 - 0.757143 \cdot 7 + 0.214286 \cdot 7^2 = 8.6$

An (unconventional) introduction

L Trend extraction

Exponential Trend Model

Year	Time (x_t)	Turnover (y_t)
05	1	2
06	2	5
07	3	2
08	4	2
09	5	7
10	6	6

 $\mathbf{y}_t = \alpha \beta_1^{\mathbf{x}_t}$

 \Rightarrow Non-linear Least Squares (NLS) or Linearize the model and use OLS:

$$\log y_t = \log \alpha + \log(\beta_1) x_t$$

 \Rightarrow 'relog' the model

- An (unconventional) introduction
 - Trend extraction

Exponential Trend Model

Estimation via NLS:

$$\hat{y}_t = \hat{lpha} + \hat{eta_1}^{x_t} = 0.08 \cdot 1.93^{x_t}$$

Forecast for 2011:

$$\hat{y}_{2011} = 0.08 \cdot 1.93^7 = 15.4$$

Trend extraction

Logarithmic Trend Model

Year	Time (x_t)	log(<i>Time</i>)	Turnover (y_t)
05	1	log(1)	2
06	2	log(2)	5
07	3	log(3)	2
08	4	$\log(4)$	2
09	5	$\log(5)$	7
10	6	log(6)	6

Logarithmic Trend:

$$y_t = \alpha + \beta_1 \log x_t$$

Trend extraction

Logarithmic Trend Model

Estimation via **OLS**:

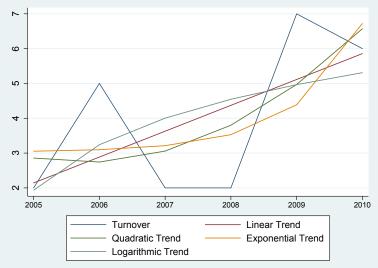
$$\hat{y}_t = \hat{\alpha} + \hat{\beta}_1 \log x_t = 1.934675 + 1.883489 \cdot \log y_t$$

Forecast for 2011:

 $\hat{Y}_{2011} = 1.934675 + 1.883489 \cdot \log(7) = 5.6$

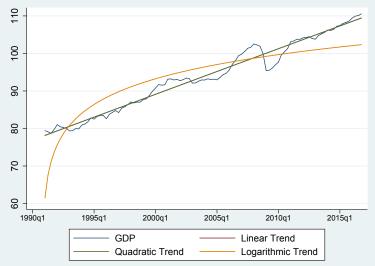
- An (unconventional) introduction
 - Trend extraction

Comparison of different trend models



- An (unconventional) introduction
 - Trend extraction

Detrending GDP



Trend extraction

Which trend model to choose?

Linear Trend model, if the first differences

$$y_t - y_{t-1}$$

are stationary

Quadratic trend model, if the second differences

$$(y_t - y_{t-1}) - (y_{t-1} - y_{t-2})$$

are stationary

Logarithmic trend model, if the relative differences

$$\frac{y_t - y_{t-1}}{y_t}$$

are stationary

Trend extraction

The Hodrick-Prescott-Filter (HP)

The HP extracts a flexible trend. The filter is given by

$$\min_{\mu_t} \sum_{t=1}^{T} [(y_t - \mu_t)^2 + \lambda \sum_{t=2}^{T-1} \{(\mu_{t+1} - \mu_t) - (\mu_t - \mu_{t-1})\}^2]$$
(8)

where μ_t is the flexible trend and λ a smoothness parameter chosen by the researcher.

- As λ approaches infinity we obtain a linear trend.
- Currently the most popular filter in economics.

Trend extraction

The Hodrick-Prescott-Filter (HP)

How to choose λ ? Hodrick-Prescot (1997) recommend:

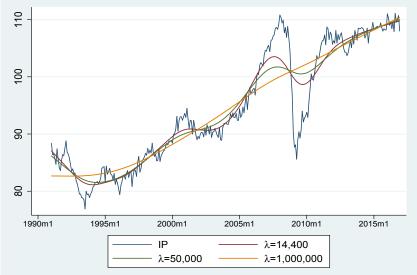
$$\lambda = \begin{cases} 100 \text{ for annual data} \\ 1600 \text{ for quarterly data} \\ 14400 \text{ for monthly data} \end{cases}$$

Alternative: Ravn and Uhlig (2002)

(9)

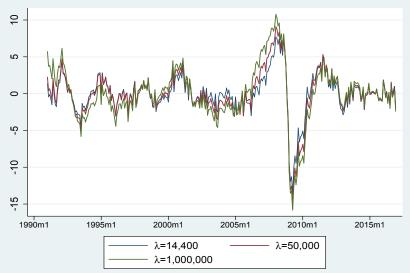
- An (unconventional) introduction
 - L Trend extraction

The Hodrick-Prescott-Filter (HP)



- An (unconventional) introduction
 - Trend extraction

The Hodrick-Prescott-Filter (HP)



- An (unconventional) introduction
 - Trend extraction

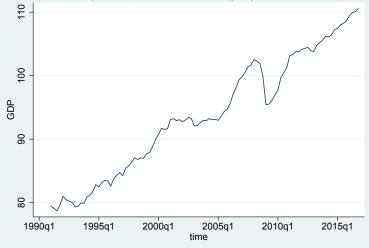
Problems with the HP-Filter

λ is a 'tuning' parameter
 end of sample instability
 ⇒ AR-forecasts

L Trend extraction

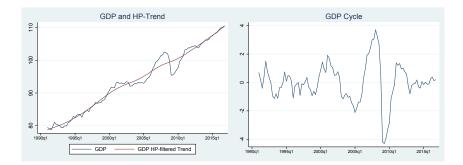
Case study for German GDP: Where are we now?

Germany: GDP (seasonal and workday-adjusted, Chain index)



- An (unconventional) introduction
 - L Trend extraction

HP-Filter



- An (unconventional) introduction
 - Trend extraction

Can we test for a trend?

- Yes and no
- Is the trend component significant?
- several trends can be significant
- Trend might be spurious
- Is it plausible to have a trend in the data?
- A priori information by the researcher
- unit roots

- An (unconventional) introduction
 - Trend extraction

Time series: Industrial Production in Germany (1991:01-2016:12)

- Plot the time series and state which trend adjustment might be appropriate
- Prepare your data set in Excel and estimate various trends in Eviews
- Which trend would you choose?

Cyclical Component

Cyclical Component

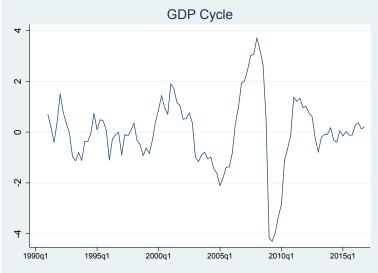
- is not always present in time series
- Is the difference between the observed time series and the estimated trend

In economics

- characterizes the Business cycle
- different length of cycles (3-5 or 10-15 years)

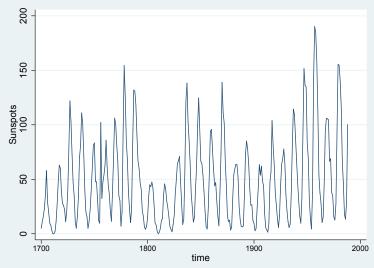
Cyclical Component

Cyclical Component: Example



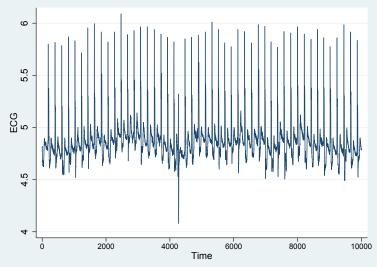
Cyclical Component

Cyclical Component: Example II



Cyclical Component

Cyclical Component: Example III



Cyclical Component

Can we test for a cyclical component?

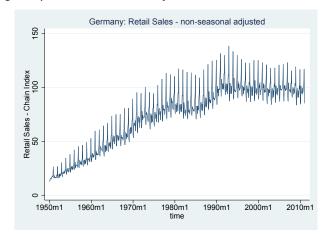
Yes and no

- see the trend section
- Does a cycle make sense?

- An (unconventional) introduction
 - Seasonal Component

Seasonal Component

similar upswings and downswings in a fixed time interval
 regular pattern, i.e. over a year



- An (unconventional) introduction
 - Seasonal Component

Types of Seasonality

• A:
$$y_t = m_t + S_t + \epsilon_t$$

$$\blacksquare B: y_t = m_t S_t + \epsilon_t$$

• C:
$$y_t = m_t S_t \epsilon_t$$

Model A is additive seasonal, Models B and C contains multiplicative seasonal variation

- An (unconventional) introduction
 - -Seasonal Component

Types of Seasonality

- if the seasonal effect is constant over the seasonal periods ⇒ additive seasonality (Model A)
- if the seasonal effect is proportional to the mean ⇒ multiplicative seasonality (Model A and B)
- in case of multiplicative seasonal models use the logarithmic transformation to make the effect additive

Seasonal Component

Seasonal Adjustment

Simplest Approach to seasonal adjustment:

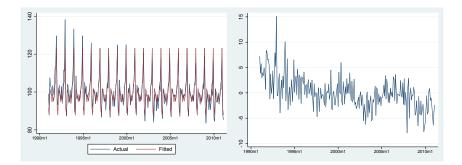
- Run the time series on a set of dummies without a constant (Assumes that the seasonal pattern is constant over time)
- the residuals of this regression are seasonal adjusted
- Example: Monthly data

$$y_t = \sum_{i=1}^{12} \beta_i D_i + \epsilon_t$$
$$\epsilon_t = y_t - \sum_{i=1}^{12} \hat{\beta} D_i$$
$$\psi_{t,sa} = \epsilon_t + mean(y_t)$$

The most well known seasonal adjustment procedure: CENSUS X12 ARIMA

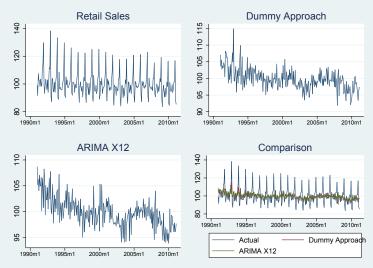
Seasonal Component

Seasonal Adjustment: Dummy Regression Example



- An (unconventional) introduction
 - Seasonal Component

Seasonal Adjustment: Example



Seasonal Component

Seasonal Moving Averages

For monthly data one can employ the filter

$$SMA(y_t) = \frac{\frac{1}{2}y_{t-6} + y_{t-5} + y_{t-4} + \ldots + y_{t+6} + \frac{1}{2}y_{t+6}}{12}$$

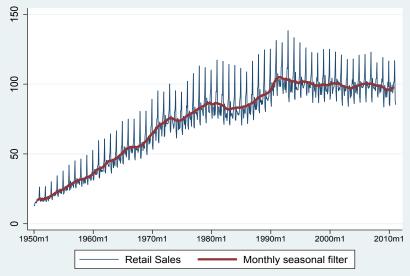
or for quarterly data

$$SMA(y_t) = \frac{\frac{1}{2}y_{t-2} + y_{t-1} + y_t + y_{t+1} + \frac{1}{2}y_{t+2}}{4}$$

Note: The weights add up to one!Standard moving average not applicable

Seasonal Component

Seasonal Moving Averages: Retail Sales Example



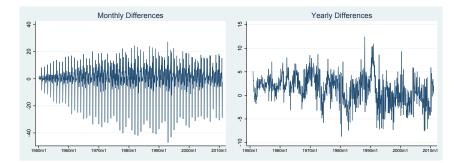
- An (unconventional) introduction
 - Seasonal Component

Seasonal Differencing

- seasonal effect can be eliminated using the a simple linear filter
- in case of a monthly time series: $\Delta_{12}y_t = y_t y_{t-12}$
- in case of a quarterly time series: $\Delta_4 y_t = y_t y_{t-4}$

Seasonal Component

Seasonal Differencing: Retail Sales Example



- An (unconventional) introduction
 - Seasonal Component

Can we test for seasonality?

- Yes and no
- Does seasonality makes sense?
- Compare the seasonal adjusted and unadjusted series
- Iook into the ARIMA X12 output
- Be aware of changing seasonal patterns

-Seasonal Component

Time series: seasonally unadjusted Industrial Production in Germany (1991:01-2011:02)

- Remove the seasonality by a moving seasonal filter
- Try the dummy approach
- Finally, use the ARIMAX12-Approach
- Start the sample in 1991:01 and compare all filters with the full sample

- An (unconventional) introduction
 - L Irregular Component

Irregular Component

- erratic, non-systematic, random "residual" fluctuations due to random shocks
 - in nature
 - due to human behavior
- no observable iterations

L Irregular Component

Can we test for an irregular component?

YES

 several tests available whether the irregular component is a white noise or not Univariate Time Series Analysis

An (unconventional) introduction

Simple Linear Models

White Noise

A process $\{y_t\}$ is called **white noise** if

$$\begin{array}{rcl} \mathsf{E}(y_t) &= & 0 \\ \gamma(0) &= & \sigma^2 \\ \gamma(h) &= & 0 \text{ for } |h| > 0 \end{array}$$

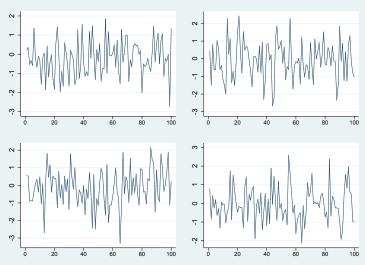
 \Rightarrow all y_t 's are uncorrelated. We write: $\{y_t\} \sim WN(0, \sigma^2)$

Univariate Time Series Analysis

An (unconventional) introduction

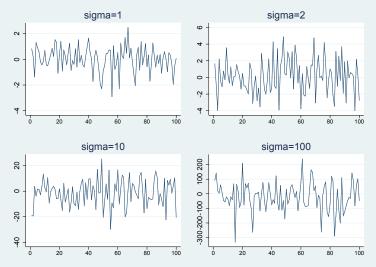
Simple Linear Models

White Noise



- An (unconventional) introduction
 - Simple Linear Models

White Noise



Simple Linear Models

Random Walk (with drift)

A simple random walk is given by

$$\mathbf{y}_t = \mathbf{y}_{t-1} + \epsilon_t$$

By adding a constant term

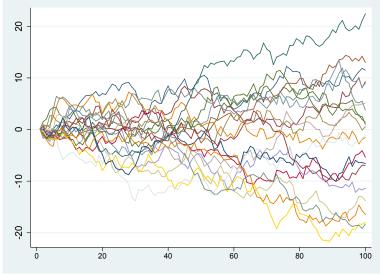
$$y_t = c + y_{t-1} + \epsilon_t$$

we get a random walk with drift. It follows that

$$y_t = ct + \sum_{j=1}^t \epsilon_j$$

- An (unconventional) introduction
 - Simple Linear Models

Random Walk: Examples

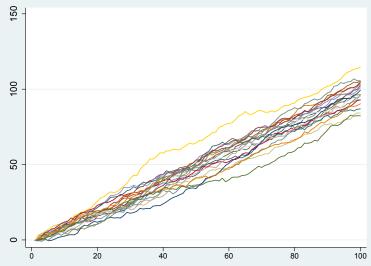


Univariate Time Series Analysis

An (unconventional) introduction

Simple Linear Models

Random Walk with Drift: Examples



Univariate Time Series Analysis

An (unconventional) introduction

Simple Linear Models

Fun with Random Walks

- Generate 50 different random walks
- Plot all random walks
- Try different variances and distributions

- An (unconventional) introduction
 - Simple Linear Models

Autoregressive processes

- especially suitable for (short-run) forecasts
- utilizes autocorrelations of lower order
 - 1st order: correlations of successive observations
 - 2nd order: correlations of observations with two periods in between
- Autoregressive model of order p

$$\mathbf{y}_t = \alpha + \beta_1 \mathbf{y}_{t-1} + \beta_2 \mathbf{y}_{t-2} + \ldots + \beta_p \mathbf{y}_{t-p} + \epsilon_t$$

Simple Linear Models

Autoregressive processes

Number of machines produced by a firm

Year	Units		
2003	4		
2004	3		
2005	2		
2006	3		
2007	2		
2008	2		
2009	4		
2010	6		

 \Rightarrow Estimation of an AR model of order 2

$$\mathbf{y}_t = \alpha + \beta_1 \mathbf{y}_{t-1} + \beta_2 \mathbf{y}_{t-2} + \epsilon_t$$

Univariate Time Series Analysis

An (unconventional) introduction

Simple Linear Models

Autoregressive processes

Estimation Table:						
	Year	Constant	Уt	<i>Y</i> _{t-1}	<i>Y</i> _{t-2}	
	2003	1	4			
	2004	1	3	4		
	2005	1	2	3	4	
	2006	1	3	2	3	
	2007	1	2	3	2	
	2008	1	2	2	3	
	2009	1	4	2	2	
	2010	1	6	4	2	

 $\Rightarrow \text{OLS}$

$$\hat{y}_t = 3.5 + 0.8125y_{t-1} - 0.9375y_{t-2}$$

Simple Linear Models

Autoregressive processes

Forecasting with an AR(2) model:

$$\hat{y}_t = 3.5 + 0.8125y_{t-1} - 0.9375y_{t-2}$$

$$y_{2011} = 3.5 + 0.8125y_{2010} - 0.9375y_{2009}$$

$$= 3.5 + 0.8125 \cdot 6 - 0.9375 \cdot 4$$

$$= 4.625$$

A more formal introduction

Table of content I

- Organizational Details and Outline
- 2 An (unconventional) introduction
 - Time series Characteristics
 - Necessity of (economic) forecasts
 - Components of time series data
 - Some simple filters
 - Trend extraction
 - Cyclical Component
 - Seasonal Component
 - Irregular Component
 - Simple Linear Models

3 A more formal introduction

- 4 (Univariate) Linear Models
 - Notation and Terminology

Table of content II

Stationarity of ARMA Processes

Identification Tools

Stochastic Processes

A stochastic process can be described as 'a statistical phenomenon that evolvoes in time according to probabilistic terms'.

Stochastic Processes

- Let y_t be an index ($t \in Z$) random variable.
- The sequence $\{y_t\}_{t \in Z}$ is called a stochastic process.
- Stochastic processes can be studied both in the time and frequency domain.
 - \Rightarrow We focus on the time domain.
- For stochastic processes the expectation value, variance and covariance are the theoretical counterparts to the time series mean, variance and covariance.
- A time series is a realization of a stochastic process.
- In order to characterize stochastic processes we have to focus on stationary processes.
- An important class of stationary processes are linear ARIMA (autoregressive integrated moving average) processes.

Stochastic Processes

- most statistical problems are concerned with estimating the properties of a population from a sample
- the latter one is typically determined by the investigator, including sample size and whether randomness is incorporated into the selection process
- time series analysis is different, as it usually impossible to make more than one observation at any given time
- it is possible to increase the sample size by varying the length of the observed time series
- but there will be only a single outcome of the process and a single observation on the random variable at time t

Basic Approach to time series modeling

- time series are sampled either with regular (equidistant) or irregular intervals (non-equidistant)
- regular time intervals: yearly, quarterly, monthly, weekly, daily, hourly, etc. (⇒ continuous flow)
- irregular intervals: transaction prices of stocks

Basic Approach to time series modeling

- A time series {y_t, t = ... − 1, 0, 1, ...} can be interpreted as a realisation of a stochastic process
- For time series with finite first and second moments we define
 - mean function: $\mu(t) = E(y_t)$
 - covariance function:

$$\begin{aligned} \gamma(t,t+h) &= \operatorname{Cov}(y_t,y_{t+h}) \\ &= \operatorname{E}[(y_t-\mu(t))(y_{t+h}-\mu(t))] \end{aligned}$$

• the Autocorrelation function: $\rho(h) = \gamma(h)/\gamma(0) = \gamma(h)/\sigma^2$

Basic Approach to time series modeling

The concept of *stationarity* plays a central role in time series analysis.

- A time series $\{y_t\}$ is **weakly stationary**, if for all *t*:
 - $\mu(t) = \mu$, i.e., it does not depend on *t*, and
 - $\gamma(t+h,t) = \gamma(h)$, depends only on *h* and not on *t*
- This means, that for all *h* die time series {*y_t*} moves in a similar way as the "shifted" time series {*y_{t+h}*}.

Basic Approach to time series modeling

Assuming that y_t is weakly stationary, we define the Autocovariance function (ACVF) for lag h

$$\gamma(h) = \gamma(t, t - h)$$

and the autocorrelation function(ACF)

$$\rho(h) = \gamma(h)/\gamma(0) = Corr(y_t, y_{t-h})$$

The ACF is a sequence of correlation with the following characteristics

$$-1 \le \rho(h) \le 1 \text{ mit } \rho(0) = 1.$$

Basic Approach to time series modeling

The ACVF has the following properties:

Basic Approach to time series modeling

- Step 1: Data inspection, data cleaning (exclusion of outliers), data transformation (e.g. seasonal or trend adjustment),
- Step 2: Choice of a specific model that accounts best for the (adjusted) data at hand
- Step 3: Specification and estimation of parameters of the model
- Step 4: Check the estimated model, if necessary go back to step 3, 2, or 1
- **Step 5**: Use the model in practice
 - compact description of the data
 - interpretation of the data characteristics
 - inference, testing of hypotheses (in-sample)
 - forecasting (out-of-sample)

- Basic Assumption: Characteristics of a time series remain constant also in the future.
- Forecasting with "mechanical" trend projections without considering experience and subjective elements ("judgemental forecasts")

Table of content I

- Organizational Details and Outline
- 2 An (unconventional) introduction
 - Time series Characteristics
 - Necessity of (economic) forecasts
 - Components of time series data
 - Some simple filters
 - Trend extraction
 - Cyclical Component
 - Seasonal Component
 - Irregular Component
 - Simple Linear Models
- 3 A more formal introduction
- 4 (Univariate) Linear Models
 - Notation and Terminology

Table of content II

- Stationarity of ARMA Processes
- Identification Tools

└─ Notation and Terminology

Linear Difference Equations

Time series models can be represented or approximated by a linear difference equation. Consider the situation where a realization at time t, y_t , is a linear function of the last p realizations of y and a random disturbance term, denoted by ϵ_t .

$$\mathbf{y}_t = \alpha_1 \mathbf{y}_{t-1} + \alpha_2 \mathbf{y}_{t-2} + \dots + \alpha_p \mathbf{y}_{t-p} + \epsilon_t.$$
(10)

 \Rightarrow AR(p)-Process

-Notation and Terminology

The Lag Operator

The *lag operator* (also called backward shift operator), denoted by *L*, is an operator that shifts the time index backward by one unit. Applying it to a variable at time *t*, we obtain the value of the variable at time t - 1, i.e.,

$$Ly_t = y_{t-1}$$
.

Applying the lag operator twice amount to lagging the variable twice, i.e., $L^2y_t = L(Ly_t) = Ly_{t-1} = y_{t-2}$.

-Notation and Terminology

The Lag Operator

More formally, the lag operator transforms one time series, say $\{x_t\}_{t=-\infty}^{\infty}$, into another series, say $\{y_t\}_{t=-\infty}^{\infty}$, where $x_t = y_{t-1}$. Raising *L* to a negative power, we obtain a *delay* (or *lead*) *operator*, i.e.,

$$L^{-k}y_t = y_{t+k}.$$

└- Notation and Terminology

The Lag Operator

The following statements hold for the lag operator L

$$Lc = c \text{ for a constant c}$$
(11)

$$(L^{j} + L^{i})y_{t} = L^{j}y_{t} + L^{i}y_{t} \text{ (distributive law)}$$
(12)

$$L^{i}(L^{j}y_{t}) = L^{i}y_{t-j} \text{ (associative law)}$$
(13)

$$aLy_{t} = L(ay_{t}) = ay_{t-1}$$
(14)

-Notation and Terminology

The Difference Operator

The *difference operator* Δ is used to express the difference between values of time series at different times. With Δy_t we denote the first difference of y_t , i.e.,

$$\Delta y_t = y_t - y_{t-1}.$$

It follows that

$$\Delta^2 y_t = \Delta(\Delta y_t) = \Delta(y_t - y_{t-1})$$

= $(y_t - y_{t-1}) - (y_{t-1} - y_{t-2}) = y_t - 2y_{t-1} + y_{t-2}$

etc. The difference operator can expressed in terms of the lag operator by $\Delta = 1 - L$. Hence, $\Delta^2 = (1 - L)^2 = 1 - 2L + L^2$ and, in general, $\Delta^n = (1 - L)^n$.

└─ Notation and Terminology

Transforming the Expression of Time Series Models

The lag operator enables us to express higher–order difference equations more compactly in form of polynomials in lag operator *L*.

For example, the difference equation

$$\mathbf{y}_t = \alpha_1 \mathbf{y}_{t-1} + \alpha_2 \mathbf{y}_{t-2} + \alpha_3 \mathbf{y}_{t-3} + \mathbf{c}$$

can be written as

$$\mathbf{y}_t = \alpha_1 \mathbf{L} \mathbf{y}_t + \alpha_2 \mathbf{L}^2 \mathbf{y}_t + \alpha_3 \mathbf{L}^3 \mathbf{y}_t + \mathbf{c},$$

$$(1 - \alpha_1 L - \alpha_2 L^2 - \alpha_3 L^3) y_t = c$$

or, in short,

$$a(L)y_t = c.$$

-Notation and Terminology

The Characteristic Equation

Replacing in polynomial a(L) lag operator L by variable λ , we obtain the *characteristic equation* associated with difference equation (10):

$$a(\lambda) = 0. \tag{15}$$

A value of λ which satisfies characteristic equation (15) is called a *root* of polynomial $a(\lambda)$.

 \Rightarrow Will be important in later applications.

-Notation and Terminology

Solving Difference Equations

Expression (15) represents the so-called *coefficient form* of a characteristic equation, i.e.,

$$1 - \alpha_1 \lambda - \dots - \alpha_p \lambda^p = 0.$$

An alternative is the root form given by

$$(\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdots (\lambda_p - \lambda) = \prod_{i=1}^p (\lambda_i - \lambda) = 0.$$

└─ Notation and Terminology

Solving Difference Equations: An Example

Consider the difference equation

$$y_t = \frac{3}{2}y_{t-1} - \frac{1}{2}y_{t-2} + \epsilon_t.$$

The characteristic equation in coefficient form is given by

$$1-\frac{3}{2}\lambda+\frac{1}{2}\lambda^2=0$$

or

$$\mathbf{2} - \mathbf{3}\lambda + \mathbf{1}\lambda^2 = \mathbf{0},$$

which can be written in root form as

$$(1 - \lambda)(2 - \lambda) = 0.$$

Here, $\lambda_1 = 1$ and $\lambda_2 = 2$ represent the set of possible solutions for λ satisfying the characteristic equation $1 - \frac{3}{2}\lambda + \frac{1}{2}\lambda^2 = 0$.

-Notation and Terminology

Solving Difference Equations: An Example

Calculate the characteristic roots of the following difference equations

$$\mathbf{y}_t = \mathbf{y}_{t-1} - \mathbf{y}_{t-2} + \epsilon_t \tag{16}$$

$$\mathbf{y}_t = -\mathbf{y}_{t-1} + \mathbf{y}_{t-2} + \epsilon_t \tag{17}$$

$$y_t = 0.125y_{t-3} + \epsilon_t \tag{18}$$

-Notation and Terminology

Autoregressive (AR) Processes

An *autoregressive process* of order *p*, or briefly an AR(*p*) process, is a process where realization y_t is a weighted sum of past *p* realizations, i.e., $y_{t-1}, y_{t-2}, \ldots, y_{t-p}$, plus an additive, contemporaneous disturbance term, denoted by ϵ_t . The process can be represented by the *p*-th order difference equation

$$y_t = \alpha_1 y_{t-1} + \alpha_2 y_{t-2} + \ldots + \alpha_p y_{t-p} + \epsilon_t.$$
(19)

└─ Notation and Terminology

Autoregressive (AR) Processes

$$y_t = \alpha_1 y_{t-1} + \alpha_2 y_{t-2} + \ldots + \alpha_p y_{t-p} + \epsilon_t.$$
 (20)

We assume that ϵ_t , $t = 0, \pm 1, \pm 2...$, is a zero-mean, independently and identically distributed (iid) sequence with

$$\mathsf{E}(\epsilon_t) = \mathsf{0}, \qquad \mathsf{E}(\epsilon_s \epsilon_t) = \begin{cases} \sigma^2, & \text{if } s = t, \\ \mathsf{0}, & \text{if } s \neq t, \end{cases}$$
(21)

for all *t* and *s*. Sequence (21) is called a zero-mean *white-noise process*, or simply *white noise*.

└─ Notation and Terminology

Autoregressive (AR) Processes

Using the lag operator L, the AR(p) process (19) can be expressed more compactly as

$$(1 - \alpha_1 L - \alpha_2 L^2 - \ldots - \alpha_p L^p) y_t = \epsilon_t$$

or

$$a(L)y_t = \epsilon_t, \tag{22}$$

where the autoregressive polynomial a(L) is defined by $a(L) = 1 - \alpha_1 L - \alpha_2 L^2 - \ldots - \alpha_p L^p$.

-Notation and Terminology

The mean of a stationary AR(1) process

$$\mathbf{y}_t = \alpha_0 + \alpha_1 \mathbf{y}_{t-1} + \epsilon_t$$

Taking Expectations (E) we get

$$E(y_t) = \alpha_0 + \alpha_1 E(y_{t-1}) + E(\epsilon_t)$$

$$E(y_t) = \alpha_0 + \alpha_1 E(y_t)$$

$$E(y_t) = \mu = \frac{\alpha_0}{1 - \alpha_1}$$

└─ Notation and Terminology

The mean of a stationary AR(*p*) process

We the same technique one can obtain the mean of an AR(2) process

$$\mathsf{E}(\mathbf{y}_t) = \mu = \frac{\alpha_0}{1 - \alpha_1 - \alpha_2}$$

and an AR(p) process

$$\mathsf{E}(\mathbf{y}_t) = \mu = \frac{\alpha_0}{1 - \alpha_1 - \alpha_2 - \ldots - \alpha_p}$$

Univariate Time Series Analysis

(Univariate) Linear Models

-Notation and Terminology

Examples

Calculate the mean of the following AR processes

$$y_t = 0.5y_{t-1} + \epsilon_t \tag{23}$$

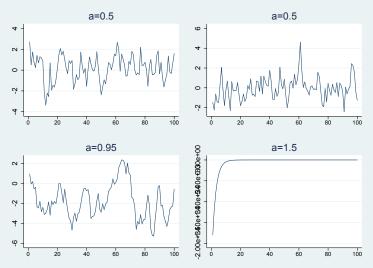
$$y_t = 0.5 + 0.5y_{t-1} + \epsilon_t$$
 (24)

$$y_t = 0.5 - 0.5y_{t-1} + \epsilon_t$$
 (25)

$$y_t = 0.5 + 0.5y_{t-1} + 0.5y_{t-2} + \epsilon_t$$
 (26)

-Notation and Terminology

AR Examples



-Notation and Terminology

Moving Average (MA) Processes

A moving average process of order q, denoted by MA(q), is the weighted sum of the preceding q lagged disturbances plus a contemporaneous disturbance term, i.e.,

$$y_t = \beta_0 + \beta_1 \epsilon_{t-1} + \ldots + \beta_q \epsilon_{t-q} + \epsilon_t$$
(27)

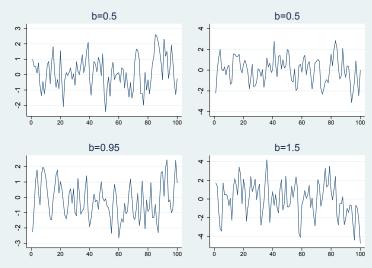
or

$$y_t = b(L)\epsilon_t. \tag{28}$$

Here $b(L) = \beta_0 + \beta_1 L + \beta_2 L^2 + \ldots + \beta_q L^q$ denotes a moving average polynomial of degree q, and ϵ_t is again a zero-mean white noise process.

-Notation and Terminology

MA Examples



-Notation and Terminology

The mean of a stationary MA(q) process

$$\mathbf{y}_t = \beta_0 + \beta_1 \epsilon_{t-1} + \ldots + \beta_q \epsilon_{t-q} + \epsilon_t$$

Taking expectations we get

$$\mathsf{E}(\mathbf{y}_t) = \mu = \beta_0$$

because

$$\mathsf{E}(\epsilon_t) = \mathsf{E}(\epsilon_{t-1}) = \ldots = \mathsf{E}(\epsilon_{t-q}) = \mathsf{0}$$

Univariate Time Series Analysis

(Univariate) Linear Models

└─ Notation and Terminology

Relationship between AR and MA Consider the AR(1) process

 $\mathbf{y}_t = \alpha_1 \mathbf{y}_{t-1} + \epsilon_t$

Repeated substitution yields

$$y_t = \alpha_1(\alpha_1 y_{t-2} + \epsilon_{t-1}) + \epsilon_t$$

= $\alpha_1^2 y_{t-2} + \alpha_1 \epsilon_{t-1} + \epsilon_t$
= $\alpha_1^2(\alpha_1 y_{t-3} + \epsilon_{t-1}) + \alpha_1 \epsilon_{t-1} + \epsilon_t$
= ...
= $\sum_{j=1}^{\infty} \alpha_1^j \epsilon_{t-j} + \epsilon_t$

i.e., each stationary AR(1) process can be represented as an $MA(\infty)$ process.

└─ Notation and Terminology

The mean of a stationary AR(q) process

Whiteboard

Alternative derivation of the mean of an stationary AR(1) process

$$y_t = c + a y_{t-1} + \epsilon_t \tag{29}$$

with |a| < 1.

└─ Notation and Terminology

Relationship between AR and MA

For a general stationary AR(*p*) process

$$y_t = \alpha_1 y_{t-1} + \alpha_2 y_{t-2} + \ldots + \alpha_p y_{t-p} + \epsilon_t$$

$$a(L)y_t = \epsilon_t$$

we have

$$y_t = a(L)^{-1} \epsilon_t = \phi(L) \epsilon_t = \sum_{j=1}^{\infty} \phi_j \epsilon_{t-j}$$
(30)

 ∞

where $\phi(L)$ is an operator satisfying $a(L)\phi(L) = 1$.

-Notation and Terminology

Autoregressive Moving Average (ARMA) Processes

The AR and MA processes just discussed can be regarded as special cases of a mixed *autoregressive moving average process*, in short, an ARMA(p, q) process. It is written as

$$\mathbf{y}_{t} = \alpha_{1}\mathbf{y}_{t-1} + \ldots + \alpha_{p}\mathbf{y}_{t-p} + \epsilon_{t} + \beta_{1}\epsilon_{t-1} + \ldots + \beta_{q}\epsilon_{t-q} \quad (31)$$

or

$$a(L)y_t = b(L)\epsilon_t. \tag{32}$$

Clearly, ARMA(p, 0) and ARMA(0, q) processes correspond to pure AR(p) and MA(q) processes, respectively.

-Notation and Terminology

The mean of a stationary ARMA(p, q) process

For

$$\mathbf{y}_{t} = \alpha_{0} + \alpha_{1}\mathbf{y}_{t-1} + \ldots + \alpha_{p}\mathbf{y}_{t-p} + \beta_{1}\epsilon_{t-1} + \ldots + \beta_{q}\epsilon_{t-q} + \epsilon_{t}$$
(33)

we get

$$\mathsf{E}(\mathbf{y}_t) = \mu = \frac{\alpha_0}{1 - \alpha_1 - \alpha_2 - \ldots - \alpha_p}$$

applying the previous arguments.

└- Notation and Terminology

Examples

Calculate the mean of the following ARMA processes

$$y_t = 0.5\epsilon_{t-1} + \epsilon_t \tag{34}$$

$$y_t = 1500\epsilon_{t-1} + 0.5 + 0.75y_{t-1} + \epsilon_t - 0.8\epsilon_{t-2}$$
 (35)

$$y_t = 0.5 - 0.5y_{t-1} + 2\epsilon_{t-1} + 0.8\epsilon_{t-2} + \epsilon_t$$
(36)

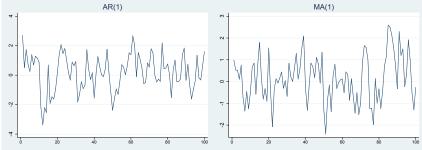
$$\mathbf{y}_t = \mathbf{y}_{t-1} + \mathbf{0.5}\boldsymbol{\epsilon}_{t-1} + \boldsymbol{\epsilon}_t \tag{37}$$

Univariate Time Series Analysis

(Univariate) Linear Models

Notation and Terminology

ARMA Examples



ARMA(1,1)

148/212

-Notation and Terminology

ARMA Processes With Exogenous Variables (ARMAX Processes)

ARMA processes that also include current and/or lagged, exogenously determined variables are called *ARMAX processes*. Denoting the exogenous variable by y_t , an ARMAX process has the form

$$a(L)y_t = b(L)\epsilon_t + g(L)x_t.$$
(38)

-Notation and Terminology

Example: ARX-models for Forecasting

$$a(L)y_t = g(L)x_t + \epsilon_t$$
(39)
$$y_t = \alpha + \sum_{i=1}^{p} \beta_i y_{t-i} + \sum_{j=1}^{q} \gamma_j x_{t-j} + \epsilon_t$$
(40)

For example: Forecasting German Industrial Production with its own lagged values plus an exogenous indicator (e.g. the Ifo Business Climate)

 \Rightarrow Section about prediction

└─ Notation and Terminology

Integrated ARMA (ARIMA) Processes

Very often we observe that the mean and/or variance of economic time series increase over time. In this case, we say the series are nonstationary. However, a series of the *changes* from one period to the next, i.e., the first differences, may have a mean and/or variance that do not change over time.

 \Rightarrow Model the differenced series

└─ Notation and Terminology

Integrated ARMA (ARIMA) Processes

An ARMA model for the *d*-th difference of a series rather than the original series is called an *autoregressive integrated moving average process*, or an ARIMA (p, d, q), process and written as

$$a(L)\Delta^d y_t = b(L)\epsilon_t.$$
(41)

└─ Notation and Terminology

Further Aspects

Seasonal ARMA Processes

$$\alpha_{s}(L^{s})(1-L^{s})^{D}y_{t} = \beta_{s}(L^{s})\epsilon_{t}, \qquad (42)$$

ARMA Processes with deterministic Components: Adding a constant

$$a(L)y_t = c + b(L)\epsilon_t. \tag{43}$$

Or a linear Trend

$$a(L)y_t = c_0 + c_1t + b(L)\epsilon_t.$$

Stationarity of ARMA Processes

The Concept of Stationarity

Stationarity is a property that guarantees that the essential properties of a time series remain constant over time. An important concept of stationarity is that of *weak stationarity*. Time series $\{y_t\}_{t=-\infty}^{\infty}$ is said to be weakly stationary if:

- (1) the mean of y_t is constant over time, i.e., $E(y_t) = \mu$, $|\mu| < \infty$;
- (2) the variance of y_t is constant over time, i.e., $Var(y_t) = \gamma_0 < \infty$;
- (3) the covariance of y_t and y_{t-k} does not vary over time, but may depend on the lag k, i.e., $Cov(y_t, y_{t-k}) = \gamma_k$, $|\gamma_k| < \infty$.

⇒ A process is called *strongly (strictly) stationary* if the joint distribution of $(y_1, ..., y_k)$ is identical to that of $(y_{1+t}, ..., y_{k+t})$.

Stationarity of ARMA Processes

Stationarity of AR(*p*) processes

An AR(p) is stationary if the absolute values of all the roots of the characteristic equation

$$\alpha_0 - \alpha_1 \lambda - \dots - \alpha_p \lambda^p = \mathbf{0}.$$

are greater than 1 (with $\alpha_0 = 1$).

- This is in practice difficult to realize.
- What about forth order characteristic equations?
- Alternative: Employ the Schur Criterion

Stationarity of ARMA Processes

Stationarity of AR(p) processes: The Schur Criterion

If the determinants

$$\boldsymbol{A}_{1} = \begin{vmatrix} \alpha_{0} & \alpha_{p} \\ \alpha_{p} & \alpha_{0} \end{vmatrix}, \boldsymbol{A}_{2} = \begin{vmatrix} \alpha_{0} & 0 & \alpha_{p} & \alpha_{p-1} \\ \alpha_{1} & \alpha_{0} & 0 & \alpha_{p} \\ \alpha_{p} & 0 & \alpha_{0} & \alpha_{1} \\ \alpha_{p-1} & \alpha_{p} & 0 & \alpha_{0} \end{vmatrix} \dots$$

Stationarity of ARMA Processes

Stationarity of AR(p) processes: The Schur Criterion

and

$$A_{p} = \begin{vmatrix} \alpha_{0} & 0 & \dots & 0 & \alpha_{p} & \alpha_{p-1} & \dots & \alpha_{1} \\ \alpha_{1} & \alpha_{0} & \dots & 0 & 0 & \alpha_{p} & \dots & \alpha_{2} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ \alpha_{p-1} & \alpha_{p-2} & \dots & \alpha_{0} & 0 & 0 & \dots & \alpha_{p} \\ \alpha_{p} & 0 & \dots & 0 & \alpha_{0} & \alpha_{1} & \dots & \alpha_{p-1} \\ \alpha_{p-1} & \alpha_{p-1} & \dots & 0 & 0 & \alpha_{0} & \dots & \alpha_{p-2} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ \alpha_{1} & \alpha_{2} & \dots & \alpha_{p} & 0 & 0 & \dots & \alpha_{0} \end{vmatrix}$$

are all positive, then an AR(*p*) process is stationary.

Univariate Time Series Analysis

(Univariate) Linear Models

Stationarity of ARMA Processes

Stationarity of an AR(1) Process

Consider the AR(1) process

$$\mathbf{y}_t = \alpha_1 \mathbf{y}_{t-1} + \epsilon_t$$

The characteristic equation is

$$\mathbf{1} - \alpha_1 \lambda = \mathbf{0}$$

We have

$$A_{1} = \begin{vmatrix} \alpha_{0} & \alpha_{p} \\ \alpha_{p} & \alpha_{0} \end{vmatrix} = \begin{vmatrix} 1 & -\alpha_{1} \\ -\alpha_{1} & 1 \end{vmatrix}$$
$$= 1 - \alpha_{1}^{2} > 0 \Longleftrightarrow |\alpha_{1}| < 1$$

Stationarity of ARMA Processes

Stationarity of AR(*p*) processes: **An Alternative Schur Criterion**

For the AR polynomial $a(L) = 1 - \alpha_1 L - \ldots - \alpha_p L^p$, the Schur criterion requires the construction two lower-triangular Toeplitz matrices, A_1 and A_2 , whose first columns consist of the vectors $(1, -\alpha_1, -\alpha_2, \ldots, -\alpha_{p-1})'$ and $(-\alpha_p, -\alpha_{p-1}, \ldots, -\alpha_1)'$, respectively, i.e.,

$$A_{1} = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ -\alpha_{1} & 1 & & 0 \\ -\alpha_{2} & -\alpha_{1} & \ddots & & \vdots \\ \vdots & & & 0 \\ -\alpha_{p-1} & -\alpha_{p-2} & \cdots & -\alpha_{1} & 1, \end{bmatrix}$$

Stationarity of ARMA Processes

Stationarity of AR(*p*) processes: **An Alternative Schur Criterion**

$$A_{2} = \begin{bmatrix} -\alpha_{p} & 0 & \cdots & 0 & 0 \\ -\alpha_{p-1} & -\alpha_{p} & & 0 \\ -\alpha_{p-2} & -\alpha_{p-1} & & \vdots \\ \vdots & & \ddots & & 0 \\ -\alpha_{1} & -\alpha_{2} & \cdots & -\alpha_{p-1} & -\alpha_{p} \end{bmatrix}$$

Then, the AR (p) process is covariance stationary if and only if the so-called *Schur matrix*, defined by

$$S_a = A_1 A_1' - A_2 A_2',$$
 (44)

is positive definite.

Univariate Time Series Analysis

(Univariate) Linear Models

└─ Stationarity of ARMA Processes

Stationarity of AR(1) processes: **An Alternative Schur Criterion**

For

$$\mathbf{y}_t = \alpha_1 \mathbf{y}_{t-1} + \epsilon_t$$

we get $A_1 = [1]$ and $A_2 = [-\alpha_1]$

$$\left|S_{a}\right| = 1 \cdot 1' - (-\alpha_{1}) \cdot (-\alpha_{1})' = 1 - \alpha_{1}^{2} > 0 \iff \left|\alpha_{1}\right| < 1$$

Univariate Time Series Analysis

(Univariate) Linear Models

Stationarity of ARMA Processes

Stationarity of AR(2) processes: **An Alternative Schur Criterion**

For

$$\mathbf{y}_t = \alpha_1 \mathbf{y}_{t-1} + \alpha_2 \mathbf{y}_{t-2} + \epsilon_t$$

we get

$$A_{1} = \begin{bmatrix} 1 & 0 \\ -\alpha_{1} & 1 \end{bmatrix}, A_{2} = \begin{bmatrix} -\alpha_{2} & 0 \\ -\alpha_{1} & -\alpha_{2} \end{bmatrix}$$
$$S_{a} = \begin{bmatrix} 1 - \alpha_{2}^{2} & -\alpha_{1} - \alpha_{2}\alpha_{1} \\ -\alpha_{1} - \alpha_{2}\alpha_{1} & 1 - \alpha_{2}^{2} \end{bmatrix}$$

Stationarity of ARMA Processes

Stationarity of an AR(2) Process

For an AR(2) process covariance stationarity requires that the AR coefficients satisfy

$$|\alpha_2| < 1,$$

 $\alpha_2 + \alpha_1 < 1,$ (45)
 $\alpha_2 - \alpha_1 < 1.$

Stationarity of ARMA Processes

Stationarity of MA(q) Processes

Pure MA processes are always stationary, because it has no autoregressive roots.

Stationarity of ARMA Processes

Stationarity of ARMA(p, q) Processes

The stationarity property of the mixed ARMA process

$$a(L)y_t = b(L)\epsilon_t \tag{46}$$

does not dependent on the values of the MA parameters. Stationarity is a property that depends solely on the AR parameters.

L Stationarity of ARMA Processes

Stationarity: Examples

	α_1	α_2	Stationary?
AR(1)	0.5		
AR(1)	-0.99		
AR(1)	1		
AR(1)	1.5		
AR(2)	0.5	0.4	
AR(2)	0.2	-0.9	
AR(2)	1.5	-0.5	

 \Rightarrow Same conclusions for ARMA models with *q* MA lags with arbitrary parameters (β_i).

L Stationarity of ARMA Processes

Examples

Are the following process stationary? Employ the Schur-Criterion:

$$y_t = 0.5y_{t-1} + \epsilon_t \tag{47}$$

$$y_t = 0.5 + 0.5y_{t-1} + \epsilon_t$$
 (48)

$$y_t = 0.5 - 0.5y_{t-1} + \epsilon_t$$
 (49)

$$y_t = 0.5 + 0.5y_{t-1} + 0.5y_{t-2} + \epsilon_t$$
(50)

 $y_t = 0.5 + 0.5y_{t-1} + 0.5y_{t-2} - 0.8y_{t-3} + 0.5\epsilon_{t-1} + \epsilon_t(51)$

Lentification Tools

Autocovariance and Autocorrelation Functions

How to determine the order of an ARMA(p, q) process?

- Useful tools are the
 - sample autocovariance function (SACovF)
 - and its scaled counterpart sample autocorrelation function (SACF)

Lentification Tools

Deriving the ACovF and ACF for an AR(1) Process

Derive the Autocovariance Function for an AR(1) process.

$$y_t = a y_{t-1} + \epsilon_t, \tag{52}$$

where ϵ_t is the usual white–noise process with $E(\epsilon_t^2) = \sigma^2$.

L Identification Tools

Deriving the ACovF and ACF for an AR(1) Process

Consider the stationary AR(1) process

$$y_t = a y_{t-1} + \epsilon_t, \tag{53}$$

where ϵ_t is the usual white–noise process with $E(\epsilon_t^2) = \sigma^2$. To obtain the variance $\gamma_0 = E(y_t^2)$, multiply both sides of (52) by y_t ,

$$y_t^2 = a y_t y_{t-1} + y_t \epsilon_t,$$

and take expectations, i.e.,

$$\mathsf{E}(y_t^2) = a\mathsf{E}(y_t y_{t-1}) + \mathsf{E}(y_t \epsilon_t)$$

or

$$\gamma_0 = a\gamma_1 + \mathsf{E}(y_t\epsilon_t).$$

Lentification Tools

Deriving the ACovF and ACF for an AR(1) Process

Thus, to specify γ_0 , we have to determine γ_1 and $E(y_t \epsilon_t)$. To obtain the latter quantity, substitute the RHS of (52) for y_t ,

$$E(\mathbf{y}_{t}\epsilon_{t}) = E[(\mathbf{a}\mathbf{y}_{t-1} + \epsilon_{t})\epsilon_{t}]$$

= $\mathbf{a}E(\mathbf{y}_{t-1}\epsilon_{t}) + E(\epsilon_{t}^{2}).$

Since y_{t-1} is independent of the future disturbances ϵ_{t+i} , $i = 0, 1, ..., E(y_{t-1}\epsilon_t) = 0$ and $E(\epsilon_t^2) = \sigma^2$,

$$\mathsf{E}(\epsilon_t \mathbf{y}_t) = \sigma^2.$$

Therefore,

$$\gamma_0 = a\gamma_1 + \sigma^2. \tag{54}$$

Lentification Tools

Deriving the ACovF and ACF for an AR(1) Process

To determine $\gamma_1 = E(y_t y_{t-1})$, we basically repeat the above procedure. Multiplying (52) by y_{t-1} and taking expectations on both sides gives

$$\mathsf{E}(y_t y_{t-1}) = a \mathsf{E}(y_{t-1}^2) + \mathsf{E}(y_{t-1} \epsilon_t).$$

Using $E(y_{t-1}\epsilon_t) = 0$ and the fact that stationarity implies that $E(y_{t-1}^2) = E(y_t^2) = \gamma_0$, we have

$$\gamma_1 = a \gamma_0. \tag{55}$$

Lentification Tools

Deriving the ACovF and ACF for an AR(1) Process

Substituting (55) into (54) and solving for γ_0 gives the expression for the theoretical variance of an AR(1) process, which we derived in the previous section,

$$\gamma_0 = \frac{\sigma^2}{1 - a^2}.$$
 (56)

It follows from (55) that

$$\gamma_1 = a \frac{\sigma^2}{1 - a^2}.$$
 (57)

Lentification Tools

Deriving the ACovF and ACF for an AR(1) Process

In fact, since

$$\mathsf{E}(y_t y_{t-k}) = a \mathsf{E}(y_{t-1} y_{t-k}) + \mathsf{E}(\epsilon_t y_{t-k}), \qquad k = 1, 2, \dots,$$

and $E(\epsilon_t y_{t-k}) = 0$, for k = 1, 2, ..., first and higher-order autocovariances are derived recursively by

$$\gamma_k = a \gamma_{k-1}, \qquad k = 1, 2, \dots$$
 (58)

It is obvious that the recursive relationship (58) holds also for the autocorrelation function, $\rho_k = \gamma_k / \gamma_0$, of the AR(1) process, i.e., $\rho_k = a\rho_{k-1}$, for k = 1, 2, ...

Lentification Tools

Deriving the ACov and ACF for an ARMA(1,1) Process

Consider the stationary, zero-mean ARMA(1,1) process

$$y_t = ay_{t-1} + \epsilon_t + b\epsilon_{t-1}, \tag{59}$$

where ϵ_t is again an white–noise process with variance σ^2 .

Lentification Tools

Deriving the ACov and ACF for an ARMA(1,1) Process

As in the previous example, multiplying (59) by y_t and taking expectations yields

$$\gamma_0 = a\gamma_1 + \mathsf{E}[y_t(\epsilon_t + b\epsilon_{t-1})]. \tag{60}$$

To determine $E[y_t(\epsilon_t + b\epsilon_{t-1})]$, replace y_t by the right hand side of (59), i.e.,

$$\mathsf{E}[y_t(\epsilon_t + b\epsilon_{t-1})] = \mathsf{E}[(ay_{t-1} + \epsilon_t + b\epsilon_{t-1})(\epsilon_t + b\epsilon_{t-1})]$$

$$= \mathsf{E}(ay_{t-1}\epsilon_t + \epsilon_t^2 + b\epsilon_{t-1}\epsilon_t + aby_{t-1}\epsilon_{t-1} + b\epsilon_t\epsilon_{t-1} + b^2\epsilon_{t-1}^2)$$

$$= \sigma^2 + ab\sigma^2 + b^2\sigma^2.$$

Lentification Tools

Deriving the ACov and ACF for an ARMA(1,1) Process

Taking the expectation operator inside the parentheses and noting the fact that $E(y_{t-1}\epsilon_t) = E(\epsilon_{t-1}\epsilon_t) = 0$ and $E(y_{t-1}\epsilon_{t-1}) = \sigma^2$, we have

$$\mathsf{E}[y_t(\epsilon_t + b\epsilon_{t-1})] = (1 + ab + b^2)\sigma^2. \tag{61}$$

Multiplying (59) by y_{t-1} and taking expectations gives

$$\gamma_1 = \mathsf{E}[ay_{t-1}^2 + y_{t-1}(\epsilon_t + b\epsilon_{t-1})]$$

= $a\gamma_0 + b\sigma^2$.

Lentification Tools

Deriving the ACov and ACF for an ARMA(1,1) Process

Combining (60)–(62) and solving for γ_0 gives us the formula for the variance of an ARMA(1,1) process

$$\gamma_0 = \frac{1 + 2ab + b^2}{1 - a^2} \sigma^2.$$
 (62)

For the first order autocovariance we obtain from (59) and (60)

$$\gamma_{1} = \left(\frac{a(1+2ab+b^{2})}{1-a^{2}}+b^{2}\right)\sigma^{2}$$
$$= \frac{(1+ab)(a+b)}{1-a^{2}}\sigma^{2}.$$
 (63)

Lentification Tools

Deriving the ACov and ACF for an ARMA(1,1) Process

Higher-order autocovariances can be computed recursively by

$$\gamma_k = a \gamma_{k-1}, \qquad k = 2, 3, \dots$$
 (64)

Lentification Tools

Excursion: The AcovF for a general ARMA(p, q) process

Let y_t be generated by the stationary ARMA (p, q) process

$$a(L)y_t = b(L)\epsilon_t, \tag{65}$$

where ϵ_t is the usual white–noise process with $E(\epsilon_t) = 0$ and $E(\epsilon_t^2) = \sigma^2$; and a(L) and b(L) are polynomials defined by $a(L) = 1 - \alpha_1 L - \ldots - \alpha_r L^r$ and $b(L) = \beta_0 + \beta_1 L + \ldots + \beta_r L^r$, with $r = \max(p, q)$ and $\alpha_i = 0$ for $i = p + 1, p + 2, \ldots, r$, if r > p or $\beta_i = 0$ for $i = q + 1, q + 2, \ldots, r$, if r > q.

Lentification Tools

Excursion: The AcovF for a general ARMA(p, q) process

From the definition of the autocovariance, $\gamma_k = E(y_t y_{t-k})$, it follows that

$$\gamma_{k} = \alpha_{1}\gamma_{k-1} + \alpha_{2}\gamma_{k-2} + \ldots + \alpha_{r}\gamma_{k-r} + \mathsf{E}(\beta_{0}\epsilon_{t}y_{t-k} + \beta_{1}\epsilon_{t-1}y_{t-k} + \ldots + \beta_{r}\epsilon_{t-r}y_{t-k}), \qquad k = 0, 1, \ldots$$

Replacing y_{t-k} by its moving average representation, $y_{t-k} = b(L)/a(L)\epsilon_{t-k} = c(L)\epsilon_{t-k}$, where $c(L) = c_0 + c_1L + c_2L^2 \dots$, we obtain

$$\mathsf{E}(\epsilon_{t-i}y_{t-k}) = \begin{cases} c_{i-k}\sigma^2, & \text{if } i = k, k+1, \dots, r, \\ 0, & otherwise. \end{cases}$$

Lentification Tools

Excursion: The AcovF for a general ARMA(p, q) process

Defining $\gamma = (\gamma_0, \gamma_1, \dots, \gamma_r)'$, $c = (c_0, c_1, \dots, c_r)'$ and using the fact that $\gamma_{k-i} = \gamma_{i-k}$, expression (66) can be rewritten in matrix terms as

$$\gamma = M_a \gamma + N_b c \sigma^2. \tag{67}$$

The $(r + 1) \times (r + 1)$ matrix M_a is the sum of two matrices, $M_a = T_a + H_a$, with T_a denoting the lower-triangular Toeplitz matrix

$$T_{a} = \begin{bmatrix} 0 & 0 & \cdots & 0 & 0 \\ \alpha_{1} & 0 & & & 0 \\ \alpha_{2} & \alpha_{1} & \ddots & & \vdots \\ \vdots & & & & 0 \\ \alpha_{r} & \alpha_{r-1} & \cdots & \alpha_{1} & 0 \end{bmatrix},$$

Lentification Tools

Excursion: The AcovF for a general ARMA(p, q) process

and H_a is "almost" a Hankel matrix and given by

$$H_{a} = \begin{bmatrix} 0 & \alpha_{1} & \alpha_{2} & \cdots & \alpha_{r-1} & \alpha_{r} \\ 0 & \alpha_{2} & \alpha_{3} & \cdots & \alpha_{r} & 0 \\ \vdots & \vdots & & & \vdots \\ 0 & \alpha_{r-1} & \alpha_{r} & & & 0 \\ 0 & \alpha_{r} & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{bmatrix}$$

Lentification Tools

Excursion: The AcovF for a general ARMA(p, q) process

Note that matrix H_a is not exactly Hankel due to the zeros in the first column. Finally, the Hankel matrix N_b is defined by

$$N_{b} = \begin{bmatrix} \beta_{0} & \beta_{1} & \cdots & \beta_{r-1} & \beta_{r} \\ \beta_{1} & \beta_{2} & \cdots & \beta_{r} & 0 \\ \vdots & & & \vdots \\ \beta_{r-1} & \beta_{r} & & & 0 \\ \beta_{r} & 0 & \cdots & 0 & 0 \end{bmatrix}$$

Lentification Tools

Excursion: The AcovF for a general ARMA(p, q) process

The initial autocovariances can be computed by

$$\gamma = (I - M_a)^{-1} N_b c \sigma^2.$$
(68)

Since $c = (I - T_a)^{-1}b$, a closed-form expression, relating the autocovariances of an ARMA process to its parameters α_i , β_i , and σ^2 is given by

$$\gamma = (I - M_a)^{-1} N_b (I - T_a)^{-1} b \sigma^2.$$
(69)

Lentification Tools

Excursion: The AcovF for a general ARMA(p, q) process

Note that $(I - T_a)^{-1}$ always exists, since $|I - T_a| = 1$, and that

$$N_b(I-T_a)^{-1} = [(I-T_a)^{-1}]'N_b,$$

since N_b is Hankel with zeros below the main counterdiagonal and $(I - T_a)^{-1}$ is a lower-triangular Toeplitz matrix. Hence, (69) can finally be rewritten as

$$\gamma = [(I - T'_a)(I - M_a)]^{-1} N_b b \sigma^2.$$
(70)

Lentification Tools

Excursion: The AcovF for a general ARMA(p, q) process

Note that for p < q = r only p + 1 equations have to be solved simultaneously. The corresponding system of equations is obtained by eliminating the last p - q rows in (67); and higher–order autocovariances can be derived recursively by

$$\gamma_{k} = \begin{cases} \sum_{i=1}^{p} \alpha_{i} \gamma_{k-i} + \sigma^{2} \sum_{j=k}^{q} \beta_{j} c_{j-k}, & \text{if } k = p+1, p+2, \dots, q, \\ \sum_{i=1}^{p} \alpha_{i} \gamma_{k-i}, & \text{if } k = q+1, q+2, \dots \end{cases}$$
(71)

Lentification Tools

Excursion: The AcovF for a general ARMA(p, q) process

For pure autoregressive processes expression (70) reduces to

$$\gamma = [(I - T'_a)(I - M_a)]^{-1}s, \qquad (72)$$

where the $(r + 1) \times 1$ vector *s* is defined by $s = \sigma^2 (\beta_0, 0, \dots, 0)^T$. Thus, vector γ is given by the first column of $[(I - T'_a)(I - M_a)]^{-1}$ multiplied by $\sigma^2 \beta_0$.

Lentification Tools

Excursion: The AcovF for a general ARMA(p, q) process

In the case of a pure MA process, (70) simplifies to

$$\gamma = N_b b \sigma^2, \tag{73}$$

or

$$\gamma_k = \begin{cases} \sigma^2 \sum_{i=k}^{q} \beta_i \beta_{i-k}, & \text{if } k = 0, 1, \dots, q, \\ 0, & \text{if } k > q. \end{cases}$$
(74)

Lentification Tools

The AcovF of an ARMA(1,1) reconsidered

Consider again the ARMA(1,1) process $y_t = \alpha_1 y_{t-1} + \epsilon_t + \beta_1 \epsilon_{t-1}$ from Example 3.4.2. To compute $\gamma = (\gamma_0, \gamma_1)'$, we now apply formula (70). Matrices T_a , H_a , N_b and vector *b* become:

$$T_a = \begin{bmatrix} 0 & 0 \\ \alpha_1 & 0 \end{bmatrix}, \quad H_a = \begin{bmatrix} 0 & \alpha_1 \\ 0 & 0 \end{bmatrix}, \quad N_b = \begin{bmatrix} 1 & \beta_1 \\ \beta_1 & 0 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ \beta_1 \end{bmatrix}.$$

L Identification Tools

The AcovF of an ARMA(1,1) reconsidered

Simple matrix manipulations produce the desired result:

$$\begin{split} \gamma &= [(I - T_a')(I - M_a)]^{-1} N_b b \sigma^2 \\ &= \begin{bmatrix} 1 + \alpha_1^2 & -2\alpha_1 \\ -\alpha_1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & \beta_1 \\ \beta_1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ \beta_1 \end{bmatrix} \sigma^2 \\ &= \frac{1}{1 - \alpha_1^2} \begin{bmatrix} 1 & 2\alpha_1 \\ \alpha_1 & 1 + \alpha_1^2 \end{bmatrix} \begin{bmatrix} 1 + \beta_1^2 \\ \beta_1 \end{bmatrix} \sigma^2 \\ &= \frac{\sigma^2}{1 - a^2} \begin{bmatrix} 1 + \beta_1^2 + 2\alpha_1 \beta_1 \\ \alpha_1(1 + \beta_1^2) + \beta_1(1 + \alpha_1^2) \end{bmatrix}, \end{split}$$

which coincides with results (62) and (63) in the previous example.

Lentification Tools

An Example

Derive γ_0 and γ_1 using the stated procedure for the following process

$$y_t = 0.5y_{t-1} + \epsilon_t \tag{75}$$

with $\epsilon_t \sim N(0, 1)$.

Univariate Time Series Analysis

(Univariate) Linear Models

Lentification Tools

An Example

Find γ_i for i = 0, ... 3 for the following process:

$$y_t = 0.5y_{t-1} + 0.5\epsilon_{t-1} + \epsilon_t$$
 (76)

with $\epsilon_t \sim N(0, 1)$.

L Identification Tools

The Yule-Walker Equations Consider the AR(*p*) process

$$\mathbf{y}_t = \alpha_1 \mathbf{y}_{t-1} + \ldots + \alpha_p \mathbf{y}_{t-p} + \epsilon_t$$

Multiplying both sides with y_{t-i} and taking expectations yields

$$\mathsf{E}(\mathbf{y}_t \mathbf{y}_{t-j}) = \alpha_1 \mathsf{E}(\mathbf{y}_{t-1} \mathbf{y}_{t-j}) + \ldots + \alpha_p \mathsf{E}(\mathbf{y}_{t-p} \mathbf{y}_{t-j})$$

which gives rise to the following equation system

$$\gamma_{1} = \alpha_{1}\gamma_{0} + \alpha_{2}\gamma_{1} + \ldots + \alpha_{p}\gamma_{p-1}$$

$$\gamma_{2} = \alpha_{1}\gamma_{1} + \alpha_{2}\gamma_{0} + \ldots + \alpha_{p}\gamma_{p-2}$$

$$\ldots$$

$$\gamma_{p} = \alpha_{1}\gamma_{p-1} + \alpha_{2}\gamma_{p-2} + \ldots + \alpha_{p}\gamma_{0}$$

L Identification Tools

The Yule-Walker Equations

Or in matrix notation

$$\gamma = \mathbf{a}\Gamma$$

with

$$\Gamma = \begin{bmatrix} \gamma_0 & \gamma_1 & \dots & \gamma_{p-1} \\ \gamma_1 & \gamma_0 & \dots & \gamma_{p-2} \\ \vdots & \ddots & \vdots \\ \gamma_{p-1} & \gamma_{p-2} & \dots & \gamma_0 \end{bmatrix}$$

We obtain a similar structure for the autocorrelation function by dividing by γ_0 .

Identification Tools

Partial Autocorrelation Function

The *partial autocorrelation function* (PACF) represents an additional tool for portraying the properties of an ARMA process. The definition of a *partial correlation coefficient* eludes to the difference between the PACF and the ACF. The ACF $\rho_k, k = 0, \pm 1, \pm 2, \ldots$, represents the *unconditional correlation* between y_t and y_{t-k} . By *unconditional correlation* we mean the correlation between y_t and y_{t-k} without taking the influence of the intervening variables $y_{t-1}, y_{t-2}, \ldots, y_{t-k+1}$ into account.

Lentification Tools

Partial Autocorrelation Function

The PACF, denoted by α_{kk} , k = 1, 2, ..., reflects the net association between y_t and y_{t-k} over and above the association of y_t and y_{t-k} which is due to their common relationship with the intervening variables $y_{t-1}, y_{t-2}, ..., y_{t-k+1}$.

Lentification Tools

The PACF for an AR(1)

Consider the stationary AR(1) process

$$\mathbf{y}_t = \alpha_1 \mathbf{y}_{t-1} + \epsilon_t$$

Given that y_t and y_{t-2} are both correlated with y_{t-1} , we would like to know whether or not there is an additional association between y_t and y_{t-2} which goes beyond their common association with y_{t-1} .

Lentification Tools

The PACF for an AR(1)

Let
$$\rho_{12}$$
=Corr(y_t, y_{t-1}), ρ_{13} =Corr(y_t, y_{t-2}) and ρ_{23} =Corr(y_{t-1}, y_{t-2}). The partial correlation between y_t and y_{t-2} conditional on y_{t-1} , denoted by $\rho_{13,2}$, is

$$\rho_{13,2} = \frac{\rho_{13} - \rho_{12}\rho_{23}}{\sqrt{(1 - \rho_{13}^2)(1 - \rho_{23}^2)}}.$$

L Identification Tools

The PACF for an AR(1)

Considering an AR(1) process, we know that $\rho_{12} = \rho_{23} = \alpha_1$ and $\rho_{13} = \rho_2 = \alpha_1^2$. Hence, the partial autocorrelation between y_t and y_{t-2} , $\rho_{13,2}$, is zero. Denoting the partial autocorrelation between y_t and y_{t-k} by α_{kk} , it can be easily verified that for any AR(1) process $\alpha_{kk} = 0$, for k = 2, 3, ... Since there are no intervening variables between y_t and y_{t-1} , the first-order partial autocorrelation coefficient is equivalent to the first order autocorrelation coefficient, i.e., $\alpha_{11} = \rho_1$. In particular for an AR(1) process we have $\alpha_{11} = \alpha_1$.

Lentification Tools

The PACF for a general AR process

Another way of interpreting the PACF is to view it as the sequence of the *k*-th autoregressive coefficients in a *k*-th order autoregression. Letting $\alpha_{k\ell}$ denote the ℓ -th autoregressive coefficient of an AR(*k*) process, the **Yule–Walker equations**

$$\rho_{\ell} = \alpha_{k1}\rho_{\ell-1} + \dots + \alpha_{k(k-1)}\rho_{\ell-k+1} + \alpha_{kk}\rho_{\ell-k}, \qquad \ell = 1, 2, \dots, k,$$
(77)

Lentification Tools

The PACF for a general AR process

$$\rho_{\ell} = \alpha_{k1}\rho_{\ell-1} + \dots + \alpha_{k(k-1)}\rho_{\ell-k+1} + \alpha_{kk}\rho_{\ell-k}, \qquad \ell = 1, 2, \dots, k,$$
(78)

give rise to the system of linear equations

$$\begin{bmatrix} 1 & \rho_1 & \cdots & \rho_{k-1} \\ \rho_1 & 1 & & \rho_{k-2} \\ \rho_2 & \rho_1 & & \rho_{k-3} \\ \vdots & & & \vdots \\ \rho_{k-2} & & & \rho_1 \\ \rho_{k-1} & \rho_{k-2} & \cdots & 1 \end{bmatrix} \begin{bmatrix} \alpha_{k1} \\ \alpha_{k2} \\ \alpha_{k3} \\ \vdots \\ \alpha_{k(k-1)} \\ \alpha_{kk} \end{bmatrix} = \begin{bmatrix} \rho_1 \\ \rho_2 \\ \rho_3 \\ \vdots \\ \rho_{k-1} \\ \rho_k \end{bmatrix}$$

or, in short,

$$P_k \alpha_k = \underline{\rho}_k, \qquad k = 1, 2, \dots$$
 (79)

L Identification Tools

The PACF for a general AR process

Using Cramér's rule, to successively solve (79) for α_{kk} , k = 1, 2..., we have

$$\alpha_{kk} = \frac{|P_k^*|}{|P_k|}, \quad k = 1, 2, \dots,$$
(80)

where matrix P_k^* is obtained by replacing the last column of matrix P_k by vector $\underline{\rho}_k = (\rho_1, \rho_2, \dots, \rho_k)'$, i.e.,

$$P_{k}^{*} = \begin{bmatrix} 1 & \rho_{1} & \cdots & \rho_{k-2} & \rho_{1} \\ \rho_{1} & 1 & \rho_{k-3} & \rho_{2} \\ \rho_{2} & \rho_{1} & \rho_{k-4} & \rho_{3} \\ \vdots & \vdots & \vdots \\ \rho_{k-2} & 1 & \rho_{k-1} \\ \rho_{k-1} & \rho_{k-2} & \cdots & \rho_{1} & \rho_{k} \end{bmatrix}$$

L Identification Tools

The PACF for a general AR process

Applying (80), the first three terms of the PACF are given by

$$\alpha_{11} = \frac{|\rho_1|}{|1|} = \rho_1,$$

$$\alpha_{22} = \frac{\begin{vmatrix} 1 & \rho_1 \\ \rho_1 & \rho_2 \end{vmatrix}}{\begin{vmatrix} 1 & \rho_1 \\ \rho_1 & 1 \end{vmatrix}} = \frac{\rho_2 - \rho_1^2}{1 - \rho_1^2},$$

Lentification Tools

The PACF for a general AR process

$$\alpha_{33} = \frac{\begin{vmatrix} 1 & \rho_1 & \rho_1 \\ \rho_1 & 1 & \rho_2 \\ \rho_2 & \rho_1 & \rho_3 \end{vmatrix}}{\begin{vmatrix} 1 & \rho_1 & \rho_2 \\ \rho_1 & 1 & \rho_1 \\ \rho_2 & \rho_1 & 1 \end{vmatrix}} = \frac{\rho_3 + \rho_1 \rho_2 (\rho_2 - 2) - \rho_1^2 (\rho_3 - \rho_1)}{(1 - \rho_2) - (1 - \rho_2 - 2\rho_1^2)}.$$

Lentification Tools

The PACF for a general AR process

From the Yule–Walker equations it is evident that $|P_k^*| = 0$ for an AR process whose order is less than k, since the last column of matrix P_k^* can always be obtained from a linear combination of the first k - 1 (or less) columns of P_k^* . Hence, the theoretical PACF of an AR(p) will generally be different from zero for the first p terms and exactly zero for terms of higher order. This property allows us to identify the order of a pure AR process from its PACF.

L Identification Tools

The PACF for a MA(1) process

Consider the MA(1) process $y_t = \epsilon_t + \beta_1 \epsilon_{t-1}$. Its ACF is given by

$$\rho_{k} = \begin{cases} \frac{\beta_{1}}{1+\beta_{1}}, & \text{if } k=1, \\ 0, & \text{if } k=2,3,\dots \end{cases}$$

Applying (80), the first 4 terms of the PACF are:

$$\alpha_{11} = \rho_1, \ \alpha_{22} = -\frac{\rho_1^2}{1-\rho_1^2}, \tag{81}$$

$$\alpha_{33} = \frac{\rho_1^3}{1-2\rho_1^2}, \ \alpha_{44} = -\frac{\rho_1^4}{1-3\rho_1^2+\rho_1^4}.$$

L Identification Tools

The PACF for a MA(1) process

In fact, the general expression for the PACF of an MA(1) process in terms of the MA coefficient β_1 is

$$\alpha_{kk} = -\frac{(-\beta_1)^k (1-\beta_1^2)}{1-\beta_1^{2(k+1)}}.$$

 \Rightarrow PACF gradually dies out, in contrast to an AR process \Rightarrow this allows us to identify processes by looking at its corresponding ACF and PACF

Lentification Tools

Characteristics of specific processes

Identification Functions:

- **1** autocorrelation function (ACF), ρ_k ,
- **2** partial autocorrelation function (PACF), α_{kk} ,

- Identification Tools

Characteristics of AR processes

ACF: The Yule–Walker equations

$$\rho_{k} = \alpha_{1}\rho_{k-1} + \alpha_{2}\rho_{k-2} + \ldots + \alpha_{p}\rho_{k-p}, \quad k = 1, 2, \ldots$$

imply that the ACF of a stationary AR process is generally different from zero but gradually dies out as k approaches infinity.

PACF: The first p terms are generally different from zero; higher-order terms are identically zero.

L Identification Tools

Characteristics of MA Processes

ACF: We know that the ACF of an MA(q) process is given by

$$\gamma_{k} = \begin{cases} \sigma^{2} \sum_{i=k}^{q} \beta_{i} \beta_{i-k}, & \text{if } k = 0, 1, \dots, q \\ 0, & \text{if } k > q, \end{cases}$$

which implies that the ACF is generally different from zero up to lag q and equal to zero thereafter.

PACF: The PACF is computed successively by

$$\alpha_{kk} = \frac{\mid P_k^* \mid}{\mid P_k \mid}, \qquad k = 1, 2, \dots,$$

with matrices P_k^* and P_k defined in the Section before. Example 3.6.2 demonstrated the pattern of the PACF of an MA(1) process. Univariate Time Series Analysis

(Univariate) Linear Models

Lentification Tools

ACF and PACF

	Model		
	AR(<i>p</i>)	MA(q)	ARMA(<i>p</i> , <i>q</i>)
ACF	tails off	cuts off after q	tails off
PACF	cuts off after p	tails off	tails off

Table: Patterns for Identifying ARMA Processes