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Univariate Time Series Analysis

Organizational Details and Outline

Introduction

Time series analysis:
Focus: Univariate Time Series and Multivariate Time
Series Analysis.
A lot of theory and many empirical applications with real
data
Organization:

25.04. - 30.05.: Univariate Time Series Analysis, six
lectures (Klaus Wohlrabe)
28.04. - 02.06.: Fridays: Tutorials with Malte Kurz
13.06. - End of Semester: Multivariate Time Series
Analysis (Stefan Mittnik)

⇒ Lectures and Tutorials are complementary!
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Organizational Details and Outline

Tutorials and Script

Script is available at: moodle website (see course website)
Password: armaxgarchx
Script is available at the day before the lecture (noon)
All datasets and programme codes
Tutorial: Mixture between theory and R - Examples
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Literature

Shumway and Stoffer (2010): Time Series Analysis and
Its Applications: With R Examples
Box, Jenkins, Reinsel (2008): Time Series Analysis:
Forecasting and Control
Lütkepohl (2005): Applied Time Series Econometrics.
Hamilton (1994): Time Series Analysis.
Lütkepohl (2006): New Introduction to Multiple Time Series
Analysis
Chatham (2003): The Analysis of Time Series: An
Introduction
Neusser (2010): Zeitreihenanalyse in den
Wirtschaftswissenschaften
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Organizational Details and Outline

Examination

Evidence of academic achievements: Two hour written
exam both for the univariate and multivariate part
Schedule for the Univariate Exam: tba.
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Prerequisites

Basic Knowledge (ideas) of OLS, maximum likelihood
estimation, heteroscedasticity, autocorrelation.
Some algebra
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Organizational Details and Outline

Software

Where you have to pay:
STATA
Eviews
Matlab (Student version available, about 80 Euro)

Free software:
R (www.r-project.org)
Jmulti (www.jmulti.org) (Based on the book by Lütkepohl
(2005))
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Organizational Details and Outline

Tools used in this lecture

standard approach (as you might expected)
derivations using the whiteboard (not available in the
script!)
live demonstrations (examples) using Excel, Matlab,
Eviews, Stata and JMulti
live programming using Matlab
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Outline

Introduction
Linear Models
Modeling ARIMA Processes: The Box-Jenkins Approach
Prediction (Forecasting)
Nonstationarity (Unit Roots)
Financial Time Series
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Goals

After the lecture you should be able to ...
... identify time series characteristics and dynamics
... build a time series model
... estimate a model
... check a model
... do forecasts
... understand financial time series
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Questions to keep in mind

General Question Follow-up Questions
All types of data

How are the variables de-
fined?

What are the units of measurement? Do the data com-
prise a sample? If so, how was the sample drawn?

What is the relationship be-
tween the data and the phe-
nomenon of interest?

Are the variables direct measurements of the phe-
nomenon of interest, proxies, correlates, etc.?

Who compiled the data? Is the data provider unbiased? Does the provider pos-
sess the skills and resources to enure data quality and
integrity?

What processes generated
the data?

What theory or theories can account for the relationships
between the variables in the data?

Time Series data
What is the frequency of
measurement

Are the variables measured hourly, daily monthly, etc.?
How are gaps in the data (for example, weekends and
holidays) handled?

What is the type of mea-
surement?

Are the data a snapshot at a point in time, an average
over time, a cumulative value over time, etc.?

Are the data seasonally ad-
justed?

If so, what is the adjustment method? Does this method
introduce artifacts in the reported series?
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An (unconventional) introduction

Goals and methods of time series analysis

The following section partly draws upon Levine, Stephan,
Krehbiel, and Berenson (2002), Statistics for Managers.
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An (unconventional) introduction

Goals and methods of time series analysis

understanding time series characteristics and dynamics
necessity of (economic) forecasts (for policy)
time series decomposition (trends vs. cycle)
smoothing of time series (filtering out noise)

moving averages
exponential smoothing
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An (unconventional) introduction

Time series Characteristics

Time Series

A time series is timely ordered sequence of observations.
We denote yt as an observation of a specific variable at
date t .
A time series is list of observations denoted as
{y1, y2, . . . , yT} or in short {yt}Tt=1.
What are typical characteristics of times series?
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An (unconventional) introduction

Time series Characteristics

Economic Time Series: GDP I
80

90
10

0
11

0
G

D
P

1990q1 1995q1 2000q1 2005q1 2010q1 2015q1
time

Germany: GDP (seasonal and workday-adjusted, Chain index)

20 / 212



Univariate Time Series Analysis

An (unconventional) introduction

Time series Characteristics

Economic Time Series: GDP II
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An (unconventional) introduction

Time series Characteristics

Economic Time Series: Retail Sales
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Time series Characteristics

Economic Time Series: Industrial Production
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Time series Characteristics

Economic Time Series: Industrial Production
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An (unconventional) introduction

Time series Characteristics

Economic Time Series: The German DAX
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An (unconventional) introduction

Time series Characteristics

Economic Time Series: Gold Price
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An (unconventional) introduction

Time series Characteristics

Further Time Series: Sunspots
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An (unconventional) introduction

Time series Characteristics

Further Time Series: ECG
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Univariate Time Series Analysis

An (unconventional) introduction

Time series Characteristics

Further Time Series: Simulated Series: AR(1)
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An (unconventional) introduction

Time series Characteristics

Further Time Series: Chaos or a real time series?
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An (unconventional) introduction

Time series Characteristics

Further Time Series: Chaos?
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An (unconventional) introduction

Time series Characteristics

Characteristics of Time series

Trends
Periodicity (cyclicality)
Seasonality
Volatility Clustering
Nonlinearities
Chaos
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Univariate Time Series Analysis

An (unconventional) introduction

Necessity of (economic) forecasts

Necessity of (economic) Forecasts

For political actions and budget control governments need
forecasts for macroeconomic variables
GDP, interest rates, unemployment rate, tax revenues etc.
marketing need forecasts for sales related variables

future sales
product demand (price dependent)
changes in preferences of consumers
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Univariate Time Series Analysis

An (unconventional) introduction

Necessity of (economic) forecasts

Necessity of (economic) Forecasts

retail sales company need forecasts to optimize
warehousing and employment of staff
firms need to forecasts cash-flows in order to account of
illiquidity phases or insolvency
university administrations needs forecasts of the number of
students for calculation of student fees, staff planning,
space organization
migration flows
house prices
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An (unconventional) introduction

Components of time series data

Time series decomposition

Time Series 

Trend Cyclical 

Seasonal Irregular 
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Univariate Time Series Analysis

An (unconventional) introduction

Components of time series data

Time series decomposition

Classical additive decomposition:

yt = dt + ct + st + εt (1)

dt trend component (deterministic, almost constant over
time)
ct cyclical component (deterministic, periodic, medium
term horizons)
st seasonal component (deterministic, periodic; more than
one possible)
εt irregular component (stochastic, stationary)
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Univariate Time Series Analysis

An (unconventional) introduction

Components of time series data

Time series decomposition

Goal:
Extraction of components dt , ct and st

The irregular component

εt = yt − dt − ct − st

should be stationary and ideally white noise.
Main task is then to model the components appropriately.
Data transformation maybe necessary to account for
heteroscedasticity (e.g. log-transformation to stabilize
seasonal fluctuations)
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An (unconventional) introduction

Components of time series data

Time series decomposition

The multiplicative model:

yt = dt · ct · st · εt (2)

will be treated in the tutorial.
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An (unconventional) introduction

Some simple filters

Simple Filters

series = signal + noise (3)

The statistician would says

series = fit + residual (4)

At a later stage:

series = model + errors (5)

⇒ mathematical function plus a probability distribution of
the error term
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An (unconventional) introduction

Some simple filters

Linear Filters

A linear filter converts one times series (xT ) into another (yt ) by
the linear operation

yt =
+s∑

r=−q

ar xt+r

where ar is a set of weights. In order to smooth local fluctuation
one should chose the weight such that∑

ar = 1
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An (unconventional) introduction

Some simple filters

The idea

yt = f (t) + εt (6)

We assume that f (t) and εt are well-behaved.
Consider N observations at time tj which are reasonably close
in time to ti . One possible smoother is

y∗ti = 1/N
∑

ytj = 1/N
∑

f (tj) + 1/N
∑

εtj ≈ f (ti) + 1/N
∑

εtj
(7)

if εt ∼ N(0, σ2), the variance of the sum of the residuals is
σ2/N2.
The smoother is characterized by

span, the number of adjacent points included in the
calculation
type of estimator (median, mean, weighted mean etc.)
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An (unconventional) introduction

Some simple filters

Moving Average

Used for time series smoothing.
Consists of a series of arithmetic means.
Result depends on the window size L (number of included
periods to calculate the mean).
In order to smooth the cyclical component, L should
exceed the cycle length
L should be uneven (avoids another cyclical component)
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Univariate Time Series Analysis

An (unconventional) introduction

Some simple filters

Moving Average

MA(yt ) =
1

2q + 1

+q∑
r=−q

yt+r

L = 2q + 1

where the weights are given by

ar =
1

2q + 1
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An (unconventional) introduction

Some simple filters

Moving Average

Two-Sided MA:

MA(yt ) =
1

2q + 1

+q∑
r=−q

yt+r

One-sided MA:

MA(yt ) =
1

q + 1

q∑
r=0

yt−r
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Univariate Time Series Analysis

An (unconventional) introduction

Some simple filters

Moving Average

Example: Moving Average (MA) over 3 Periods
First MA term: MA2(3) = y1+y2+y3

3

Second MA term: MA3(3) = y2+y3+y4
3
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An (unconventional) introduction

Some simple filters

Moving Average
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An (unconventional) introduction

Some simple filters

Moving Average Example - TWO-sided
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⇒ the larger L the smoother and shorter the filtered series
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An (unconventional) introduction

Some simple filters

Moving Average Example - One-sided
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An (unconventional) introduction

Some simple filters

Moving Average Example - Comparison of One- and
two-sided
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An (unconventional) introduction

Some simple filters

EXAMPLE

Generate a random time series (normally distributed) with
T = 20

Quick and dirty: Moving Average with Excel
Nice and Slow: Write a simple Matlab program for
calculating a moving average of order L
Additional Task: Increase the number of observations to
T = 100, include a linear time trend and calculate different
MAs
Variation: Include some outliers and see how the
calculations change.

50 / 212



Univariate Time Series Analysis

An (unconventional) introduction

Some simple filters

Exponential Smoothing

weighted moving averages
latest observation has the highest weight compared to the
previous periods

ŷt = wyt + (1− w)ŷt−1

Repeated substitution gives:

ŷt = w
t−1∑
s=0

(1− w)sŷt−s

⇒ that’s why it is called exponential smoothing, forecasts are
the weighted average of past observations where the weights
decline exponentially with time.

51 / 212



Univariate Time Series Analysis

An (unconventional) introduction

Some simple filters

Exponential Smoothing

Is used for smoothing and short–term forecasting
Choice of w :

subjective or through calibration
numbers between 0 and 1
Close to 0 for smoothing out unpleasant cyclical or irregular
components
Close to 1 for forecasting
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An (unconventional) introduction

Some simple filters

Exponential Smoothing

ŷt = wyt + (1− w)ŷt−1 w = 0.2
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An (unconventional) introduction

Some simple filters

Exponential Smoothing
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An (unconventional) introduction

Trend extraction

Trend Component

positive or negative trend
observed over a longer time horizon
linear vs. non–linear trend
smooth vs. non–smooth trends
⇒ trend is ’unobserved’ in reality
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An (unconventional) introduction

Trend extraction

Trend Component: Example
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An (unconventional) introduction

Trend extraction

Why is trend extraction so important?

The case of detrending GDP
trend GDP is denoted as potential output
The difference between trend and actual GDP is called the
output gap
Is an economy below or above the current trend? (Or is the
output gap positive or negative?)
⇒ consequences for economic policy (wages, prices etc.)
Trend extraction can be highly controversial!
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An (unconventional) introduction

Trend extraction

Linear Trend Model

Year Time (xt ) Turnover (yt )
05 1 2
06 2 5
07 3 2
08 4 2
09 5 7
10 6 6

yt = α + βxt
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Univariate Time Series Analysis

An (unconventional) introduction

Trend extraction

Linear Trend Model

Estimation with OLS

ŷt = α̂ + β̂xt = 1.4 + 0.743xt

Forecast for 2011:

ŷ2011 = 1.4 + 0.743 · 7 = 6.6
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An (unconventional) introduction

Trend extraction

Quadratic Trend Model

Year Time (xt ) Time2 (x2
t ) Turnover (yt )

05 1 1 2
06 2 4 5
07 3 9 2
08 4 16 2
09 5 25 7
10 6 36 6

yt = α + β1xt + β2x2
t
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Univariate Time Series Analysis

An (unconventional) introduction

Trend extraction

Quadratic Trend Model

ŷt = α̂ + β̂xt + β̂2x2
t = 3.4− 0.757143xt + 0.214286x2

t

Forecast for 2011:

ŷ2011 = 3.4− 0.757143 · 7 + 0.214286 · 72 = 8.6
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An (unconventional) introduction

Trend extraction

Exponential Trend Model
Year Time (xt ) Turnover (yt )
05 1 2
06 2 5
07 3 2
08 4 2
09 5 7
10 6 6

yt = αβxt
1

⇒ Non-linear Least Squares (NLS) or
Linearize the model and use OLS:

log yt = logα + log(β1)xt

⇒ ’relog’ the model
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An (unconventional) introduction

Trend extraction

Exponential Trend Model

Estimation via NLS:

ŷt = α̂ + β̂1
xt

= 0.08 · 1.93xt

Forecast for 2011:

ŷ2011 = 0.08 · 1.937 = 15.4
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Univariate Time Series Analysis

An (unconventional) introduction

Trend extraction

Logarithmic Trend Model

Year Time (xt ) log(Time) Turnover (yt )
05 1 log(1) 2
06 2 log(2) 5
07 3 log(3) 2
08 4 log(4) 2
09 5 log(5) 7
10 6 log(6) 6

Logarithmic Trend:
yt = α + β1 log xt
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An (unconventional) introduction

Trend extraction

Logarithmic Trend Model

Estimation via OLS:

ŷt = α̂ + β̂1 log xt = 1.934675 + 1.883489 · log yt

Forecast for 2011:

Ŷ2011 = 1.934675 + 1.883489 · log(7) = 5.6
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An (unconventional) introduction

Trend extraction

Comparison of different trend models
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Quadratic Trend Exponential Trend
Logarithmic Trend
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An (unconventional) introduction

Trend extraction

Detrending GDP
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An (unconventional) introduction

Trend extraction

Which trend model to choose?
Linear Trend model, if the first differences

yt − yt−1

are stationary
Quadratic trend model, if the second differences

(yt − yt−1)− (yt−1 − yt−2)

are stationary
Logarithmic trend model, if the relative differences

yt − yt−1

yt

are stationary
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An (unconventional) introduction

Trend extraction

The Hodrick-Prescott-Filter (HP)

The HP extracts a flexible trend. The filter is given by

min
µt

T∑
t=1

[(yt − µt )
2 + λ

T−1∑
t=2

{(µt+1 − µt )− (µt − µt−1)}2] (8)

where µt is the flexible trend and λ a smoothness parameter
chosen by the researcher.

As λ approaches infinity we obtain a linear trend.
Currently the most popular filter in economics.
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An (unconventional) introduction

Trend extraction

The Hodrick-Prescott-Filter (HP)

How to choose λ?
Hodrick-Prescot (1997) recommend:

λ =


100 for annual data
1600 for quarterly data
14400 for monthly data

(9)

Alternative: Ravn and Uhlig (2002)
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An (unconventional) introduction

Trend extraction

The Hodrick-Prescott-Filter (HP)
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An (unconventional) introduction

Trend extraction

The Hodrick-Prescott-Filter (HP)
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An (unconventional) introduction

Trend extraction

Problems with the HP-Filter

λ is a ’tuning’ parameter
end of sample instability
⇒ AR-forecasts
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An (unconventional) introduction

Trend extraction

Case study for German GDP: Where are we now?
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Trend extraction

HP-Filter
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An (unconventional) introduction

Trend extraction

Can we test for a trend?

Yes and no
Is the trend component significant?
several trends can be significant
Trend might be spurious
Is it plausible to have a trend in the data?
A priori information by the researcher
unit roots
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An (unconventional) introduction

Trend extraction

EXAMPLE

Time series: Industrial Production in Germany
(1991:01-2016:12)

Plot the time series and state which trend adjustment
might be appropriate
Prepare your data set in Excel and estimate various trends
in Eviews
Which trend would you choose?
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Univariate Time Series Analysis

An (unconventional) introduction

Cyclical Component

Cyclical Component

is not always present in time series
Is the difference between the observed time series and the
estimated trend

In economics
characterizes the Business cycle
different length of cycles (3-5 or 10-15 years)
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Cyclical Component

Cyclical Component: Example
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An (unconventional) introduction

Cyclical Component

Cyclical Component: Example II
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An (unconventional) introduction

Cyclical Component

Cyclical Component: Example III
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An (unconventional) introduction

Cyclical Component

Can we test for a cyclical component?

Yes and no
see the trend section
Does a cycle make sense?
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Seasonal Component

Seasonal Component
similar upswings and downswings in a fixed time interval
regular pattern, i.e. over a year
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An (unconventional) introduction

Seasonal Component

Types of Seasonality

A: yt = mt + St + εt

B: yt = mtSt + εt

C: yt = mtStεt

Model A is additive seasonal, Models B and C contains
multiplicative seasonal variation
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An (unconventional) introduction

Seasonal Component

Types of Seasonality

if the seasonal effect is constant over the seasonal periods
⇒ additive seasonality (Model A)
if the seasonal effect is proportional to the mean
⇒ multiplicative seasonality (Model A and B)
in case of multiplicative seasonal models use the
logarithmic transformation to make the effect additive
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Seasonal Component

Seasonal Adjustment
Simplest Approach to seasonal adjustment:

Run the time series on a set of dummies without a constant
(Assumes that the seasonal pattern is constant over time)
the residuals of this regression are seasonal adjusted
Example: Monthly data

yt =
12∑

i=1

βiDi + εt

εt = yt −
12∑

i=1

β̂Di

yt ,sa = εt + mean(yt )

The most well known seasonal adjustment procedure:
CENSUS X12 ARIMA
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Seasonal Component

Seasonal Adjustment: Dummy Regression Example
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Seasonal Component

Seasonal Adjustment: Example
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Seasonal Component

Seasonal Moving Averages

For monthly data one can employ the filter

SMA(yt ) =
1
2yt−6 + yt−5 + yt−4 + . . .+ yt+6 + 1

2yt+6

12

or for quarterly data

SMA(yt ) =
1
2yt−2 + yt−1 + yt + yt+1 + 1

2yt+2

4

Note: The weights add up to one!
Standard moving average not applicable
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Seasonal Component

Seasonal Moving Averages: Retail Sales Example
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An (unconventional) introduction

Seasonal Component

Seasonal Differencing

seasonal effect can be eliminated using the a simple linear
filter
in case of a monthly time series: ∆12yt = yt − yt−12

in case of a quarterly time series: ∆4yt = yt − yt−4
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Seasonal Component

Seasonal Differencing: Retail Sales Example
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Seasonal Component

Can we test for seasonality?

Yes and no
Does seasonality makes sense?
Compare the seasonal adjusted and unadjusted series
look into the ARIMA X12 output
Be aware of changing seasonal patterns
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An (unconventional) introduction

Seasonal Component

EXAMPLE

Time series: seasonally unadjusted Industrial Production in
Germany (1991:01-2011:02)

Remove the seasonality by a moving seasonal filter
Try the dummy approach
Finally, use the ARIMAX12-Approach
Start the sample in 1991:01 and compare all filters with the
full sample
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Univariate Time Series Analysis

An (unconventional) introduction

Irregular Component

Irregular Component

erratic, non-systematic, random "residual" fluctuations due
to random shocks

in nature
due to human behavior

no observable iterations
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An (unconventional) introduction

Irregular Component

Can we test for an irregular component?

YES
several tests available whether the irregular component is
a white noise or not
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Simple Linear Models

White Noise

A process {yt} is called white noise if

E(yt ) = 0
γ(0) = σ2

γ(h) = 0 for |h| > 0

⇒ all yt ’s are uncorrelated. We write: {yt} ∼WN(0, σ2)
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Simple Linear Models

White Noise
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Simple Linear Models

White Noise
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Simple Linear Models

Random Walk (with drift)

A simple random walk is given by

yt = yt−1 + εt

By adding a constant term

yt = c + yt−1 + εt

we get a random walk with drift. It follows that

yt = ct +
t∑

j=1

εj
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Simple Linear Models

Random Walk: Examples
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Simple Linear Models

Random Walk with Drift: Examples
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Simple Linear Models

EXAMPLE

Fun with Random Walks
Generate 50 different random walks
Plot all random walks
Try different variances and distributions
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Simple Linear Models

Autoregressive processes

especially suitable for (short-run) forecasts
utilizes autocorrelations of lower order

1st order: correlations of successive observations
2nd order: correlations of observations with two periods in
between

Autoregressive model of order p

yt = α + β1yt−1 + β2yt−2 + . . .+ βpyt−p + εt
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Simple Linear Models

Autoregressive processes
Number of machines produced by a firm

Year Units
2003 4
2004 3
2005 2
2006 3
2007 2
2008 2
2009 4
2010 6

⇒ Estimation of an AR model of order 2

yt = α + β1yt−1 + β2yt−2 + εt
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Simple Linear Models

Autoregressive processes

Estimation Table:
Year Constant yt yt−1 yt−2
2003 1 4
2004 1 3 4
2005 1 2 3 4
2006 1 3 2 3
2007 1 2 3 2
2008 1 2 2 3
2009 1 4 2 2
2010 1 6 4 2

⇒ OLS
ŷt = 3.5 + 0.8125yt−1 − 0.9375yt−2
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Simple Linear Models

Autoregressive processes

Forecasting with an AR(2) model:

ŷt = 3.5 + 0.8125yt−1 − 0.9375yt−2

y2011 = 3.5 + 0.8125y2010 − 0.9375y2009

= 3.5 + 0.8125 · 6− 0.9375 · 4
= 4.625
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Univariate Time Series Analysis

A more formal introduction

Stochastic Processes

A stochastic process can be described as ’a statistical
phenomenon that evolvoes in time according to probabilistic
terms’.
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Univariate Time Series Analysis

A more formal introduction

Stochastic Processes
Let yt be an index (t ∈ Z ) random variable.
The sequence {yt}t∈Z is called a stochastic process.
Stochastic processes can be studied both in the time and
frequency domain.
⇒We focus on the time domain.
For stochastic processes the expectation value, variance
and covariance are the theoretical counterparts to the time
series mean, variance and covariance.
A time series is a realization of a stochastic process.
In order to characterize stochastic processes we have to
focus on stationary processes.
An important class of stationary processes are linear
ARIMA (autoregressive integrated moving average)
processes.
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A more formal introduction

Stochastic Processes

most statistical problems are concerned with estimating
the properties of a population from a sample
the latter one is typically determined by the investigator,
including sample size and whether randomness is
incorporated into the selection process
time series analysis is different, as it usually impossible to
make more than one observation at any given time
it is possible to increase the sample size by varying the
length of the observed time series
but there will be only a single outcome of the process and
a single observation on the random variable at time t
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A more formal introduction

Basic Approach to time series modeling

time series are sampled either with regular (equidistant) or
irregular intervals (non-equidistant)
regular time intervals: yearly, quarterly, monthly, weekly,
daily, hourly, etc. (⇒ continuous flow)
irregular intervals: transaction prices of stocks
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A more formal introduction

Basic Approach to time series modeling

A time series {yt , t = . . .− 1,0,1, . . .} can be interpreted
as a realisation of a stochastic process
For time series with finite first and second moments we
define

mean function: µ(t) = E(yt )
covariance function:

γ(t , t + h) = Cov(yt , yt+h)

= E[(yt − µ(t))(yt+h − µ(t))]

the Autocorrelation function: ρ(h) = γ(h)/γ(0) = γ(h)/σ2
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Basic Approach to time series modeling

The concept of stationarity plays a central role in time series
analysis.

A time series {yt} is weakly stationary, if for all t :
µ(t) = µ, i.e., it does not depend on t , and
γ(t + h, t) = γ(h), depends only on h and not on t

This means, that for all h die time series {yt} moves in a
similar way as the "shifted" time series {yt+h}.
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Basic Approach to time series modeling

Assuming that yt is weakly stationary, we define the
Autocovariance function (ACVF) for lag h

γ(h) = γ(t , t − h)

and the autocorrelation function(ACF)

ρ(h) = γ(h)/γ(0) = Corr(yt , yt−h)

The ACF is a sequence of correlation with the following
characteristics

−1 ≤ ρ(h) ≤ 1 mit ρ(0) = 1.
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Basic Approach to time series modeling

The ACVF has the following properties:
γ(0) ≥ 0,
|γ(h)| ≤ γ(0), for all h
γ(h) = γ(−h), for all h
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A more formal introduction

Basic Approach to time series modeling
Step 1: Data inspection, data cleaning (exclusion of
outliers), data transformation (e.g. seasonal or trend
adjustment),
Step 2: Choice of a specific model that accounts best for
the (adjusted) data at hand
Step 3: Specification and estimation of parameters of the
model
Step 4: Check the estimated model, if necessary go back
to step 3, 2, or 1
Step 5: Use the model in practice

compact description of the data
interpretation of the data characteristics
inference, testing of hypotheses (in-sample)
forecasting (out-of-sample)
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A more formal introduction

Be careful!

Basic Assumption: Characteristics of a time series remain
constant also in the future.
Forecasting with "mechanical" trend projections without
considering experience and subjective elements
("judgemental forecasts")
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(Univariate) Linear Models

Notation and Terminology

Linear Difference Equations

Time series models can be represented or approximated by a
linear difference equation. Consider the situation where a
realization at time t , yt , is a linear function of the last p
realizations of y and a random disturbance term, denoted by εt .

yt = α1yt−1 + α2yt−2 + · · ·+ αpyt−p + εt . (10)

⇒ AR(p)-Process
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(Univariate) Linear Models

Notation and Terminology

The Lag Operator

The lag operator (also called backward shift operator), denoted
by L, is an operator that shifts the time index backward by one
unit. Applying it to a variable at time t , we obtain the value of
the variable at time t − 1, i.e.,

Lyt = yt−1.

Applying the lag operator twice amount to lagging the variable
twice, i.e., L2yt = L(Lyt ) = Lyt−1 = yt−2.
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(Univariate) Linear Models

Notation and Terminology

The Lag Operator

More formally, the lag operator transforms one time series, say
{xt}∞t=−∞, into another series, say {yt}∞t=−∞, where xt = yt−1.
Raising L to a negative power, we obtain a delay (or lead)
operator, i.e.,

L−kyt = yt+k .
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(Univariate) Linear Models

Notation and Terminology

The Lag Operator

The following statements hold for the lag operator L

Lc = c for a constant c (11)
(Lj + Li)yt = Ljyt + Liyt (distributive law) (12)

Li(Ljyt ) = Liyt−j (associative law) (13)
aLyt = L(ayt ) = ayt−1 (14)
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(Univariate) Linear Models

Notation and Terminology

The Difference Operator

The difference operator ∆ is used to express the difference
between values of time series at different times. With ∆yt we
denote the first difference of yt , i.e.,

∆yt = yt − yt−1.

It follows that

∆2yt = ∆(∆yt ) = ∆(yt − yt−1)

= (yt − yt−1)− (yt−1 − yt−2) = yt − 2yt−1 + yt−2

etc. The difference operator can expressed in terms of the lag
operator by ∆ = 1− L. Hence, ∆2 = (1− L)2 = 1− 2L + L2

and, in general, ∆n = (1− L)n.
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(Univariate) Linear Models

Notation and Terminology

Transforming the Expression of Time Series Models
The lag operator enables us to express higher–order difference
equations more compactly in form of polynomials in lag
operator L.
For example, the difference equation

yt = α1yt−1 + α2yt−2 + α3yt−3 + c

can be written as

yt = α1Lyt + α2L2yt + α3L3yt + c,

(1− α1L− α2L2 − α3L3)yt = c

or, in short,

a(L)yt = c.
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(Univariate) Linear Models

Notation and Terminology

The Characteristic Equation

Replacing in polynomial a(L) lag operator L by variable λ, we
obtain the characteristic equation associated with difference
equation (10):

a(λ) = 0. (15)

A value of λ which satisfies characteristic equation (15) is
called a root of polynomial a(λ).
⇒Will be important in later applications.
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(Univariate) Linear Models

Notation and Terminology

Solving Difference Equations

Expression (15) represents the so-called coefficient form of a
characteristic equation, i.e.,

1− α1λ− · · · − αpλ
p = 0.

An alternative is the root form given by

(λ1 − λ)(λ2 − λ) · · · (λp − λ) =

p∏
i=1

(λi − λ) = 0.
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(Univariate) Linear Models

Notation and Terminology

Solving Difference Equations: An Example
Consider the difference equation

yt =
3
2

yt−1 −
1
2

yt−2 + εt .

The characteristic equation in coefficient form is given by

1− 3
2
λ+

1
2
λ2 = 0

or
2− 3λ+ 1λ2 = 0,

which can be written in root form as

(1− λ)(2− λ) = 0.

Here, λ1 = 1 and λ2 = 2 represent the set of possible solutions
for λ satisfying the characteristic equation 1− 3

2λ+ 1
2λ

2 = 0.
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(Univariate) Linear Models

Notation and Terminology

Solving Difference Equations: An Example

Calculate the characteristic roots of the following difference
equations

yt = yt−1 − yt−2 + εt (16)
yt = −yt−1 + yt−2 + εt (17)
yt = 0.125yt−3 + εt (18)
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(Univariate) Linear Models

Notation and Terminology

Autoregressive (AR) Processes

An autoregressive process of order p, or briefly an AR(p)
process, is a process where realization yt is a weighted sum of
past p realizations, i.e., yt−1, yt−2, . . . , yt−p, plus an additive,
contemporaneous disturbance term, denoted by εt .
The process can be represented by the p-th order difference
equation

yt = α1yt−1 + α2yt−2 + . . .+ αpyt−p + εt . (19)
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(Univariate) Linear Models

Notation and Terminology

Autoregressive (AR) Processes

yt = α1yt−1 + α2yt−2 + . . .+ αpyt−p + εt . (20)

We assume that εt , t = 0,±1,±2 . . ., is a zero-mean,
independently and identically distributed (iid) sequence with

E(εt ) = 0, E(εsεt ) =

{
σ2, if s = t ,
0, if s 6= t ,

(21)

for all t and s. Sequence (21) is called a zero–mean
white–noise process, or simply white noise.
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(Univariate) Linear Models

Notation and Terminology

Autoregressive (AR) Processes

Using the lag operator L, the AR(p) process (19) can be
expressed more compactly as

(1− α1L− α2L2 − . . .− αpLp)yt = εt

or

a(L)yt = εt , (22)

where the autoregressive polynomial a(L) is defined by
a(L) = 1− α1L− α2L2 − . . .− αpLp.
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(Univariate) Linear Models

Notation and Terminology

The mean of a stationary AR(1) process

yt = α0 + α1yt−1 + εt

Taking Expectations (E) we get

E(yt ) = α0 + α1E(yt−1) + E(εt )

E(yt ) = α0 + α1E(yt )

E(yt ) = µ =
α0

1− α1
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(Univariate) Linear Models

Notation and Terminology

The mean of a stationary AR(p) process

We the same technique one can obtain the mean of an AR(2)
process

E(yt ) = µ =
α0

1− α1 − α2

and an AR(p) process

E(yt ) = µ =
α0

1− α1 − α2 − . . .− αp
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(Univariate) Linear Models

Notation and Terminology

Examples

Calculate the mean of the following AR processes

yt = 0.5yt−1 + εt (23)
yt = 0.5 + 0.5yt−1 + εt (24)
yt = 0.5− 0.5yt−1 + εt (25)
yt = 0.5 + 0.5yt−1 + 0.5yt−2 + εt (26)
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(Univariate) Linear Models

Notation and Terminology

AR Examples
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(Univariate) Linear Models

Notation and Terminology

Moving Average (MA) Processes

A moving average process of order q, denoted by MA(q), is the
weighted sum of the preceding q lagged disturbances plus a
contemporaneous disturbance term, i.e.,

yt = β0 + β1εt−1 + . . .+ βqεt−q + εt (27)

or
yt = b(L)εt . (28)

Here b(L) = β0 + β1L + β2L2 + . . .+ βqLq denotes a moving
average polynomial of degree q, and εt is again a zero-mean
white noise process.
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(Univariate) Linear Models

Notation and Terminology

MA Examples
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(Univariate) Linear Models

Notation and Terminology

The mean of a stationary MA(q) process

yt = β0 + β1εt−1 + . . .+ βqεt−q + εt

Taking expectations we get

E(yt ) = µ = β0

because
E(εt ) = E(εt−1) = . . . = E(εt−q) = 0
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(Univariate) Linear Models

Notation and Terminology

Relationship between AR and MA
Consider the AR(1) process

yt = α1yt−1 + εt

Repeated substitution yields

yt = α1(α1yt−2 + εt−1) + εt

= α2
1yt−2 + α1εt−1 + εt

= α2
1(α1yt−3 + εt−1) + α1εt−1 + εt

= . . .

=
∞∑

j=1

αj
1εt−j + εt

i.e., each stationary AR(1) process can be represented as an
MA(∞) process.
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Notation and Terminology

The mean of a stationary AR(q) process

Whiteboard

Alternative derivation of the mean of an stationary AR(1)
process

yt = c + ayt−1 + εt (29)

with
∣∣a∣∣ < 1.
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Notation and Terminology

Relationship between AR and MA

For a general stationary AR(p) process

yt = α1yt−1 + α2yt−2 + . . .+ αpyt−p + εt

a(L)yt = εt

we have

yt = a(L)−1εt = φ(L)εt =
∞∑

j=1

φjεt−j (30)

where φ(L) is an operator satisfying a(L)φ(L) = 1.
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Notation and Terminology

Autoregressive Moving Average (ARMA) Processes

The AR and MA processes just discussed can be regarded as
special cases of a mixed autoregressive moving average
process, in short, an ARMA(p,q) process. It is written as

yt = α1yt−1 + . . .+ αpyt−p + εt + β1εt−1 + . . .+ βqεt−q (31)

or
a(L)yt = b(L)εt . (32)

Clearly, ARMA(p,0) and ARMA(0,q) processes correspond to
pure AR(p) and MA(q) processes, respectively.
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Notation and Terminology

The mean of a stationary ARMA(p,q) process

For

yt = α0 +α1yt−1 + . . .+αpyt−p +β1εt−1 + . . .+βqεt−q + εt (33)

we get
E(yt ) = µ =

α0

1− α1 − α2 − . . .− αp

applying the previous arguments.
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Notation and Terminology

Examples

Calculate the mean of the following ARMA processes

yt = 0.5εt−1 + εt (34)
yt = 1500εt−1 + 0.5 + 0.75yt−1 + εt − 0.8εt−2 (35)
yt = 0.5− 0.5yt−1 + 2εt−1 + 0.8εt−2 + εt (36)
yt = yt−1 + 0.5εt−1 + εt (37)
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Notation and Terminology

ARMA Examples
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(Univariate) Linear Models

Notation and Terminology

ARMA Processes With Exogenous Variables (ARMAX
Processes)

ARMA processes that also include current and/or lagged,
exogenously determined variables are called ARMAX
processes. Denoting the exogenous variable by yt , an ARMAX
process has the form

a(L)yt = b(L)εt + g(L)xt . (38)
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Univariate Time Series Analysis

(Univariate) Linear Models

Notation and Terminology

Example: ARX-models for Forecasting

a(L)yt = g(L)xt + εt (39)

yt = α +

p∑
i=1

βiyt−i +

q∑
j=1

γjxt−j + εt (40)

For example: Forecasting German Industrial Production with its
own lagged values plus an exogenous indicator (e.g. the Ifo
Business Climate)
⇒ Section about prediction
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(Univariate) Linear Models

Notation and Terminology

Integrated ARMA (ARIMA) Processes

Very often we observe that the mean and/or variance of
economic time series increase over time. In this case, we say
the series are nonstationary. However, a series of the changes
from one period to the next, i.e., the first differences, may have
a mean and/or variance that do not change over time.
⇒ Model the differenced series

151 / 212



Univariate Time Series Analysis

(Univariate) Linear Models

Notation and Terminology

Integrated ARMA (ARIMA) Processes

An ARMA model for the d-th difference of a series rather than
the original series is called an autoregressive integrated moving
average process, or an ARIMA (p,d ,q), process and written as

a(L)∆dyt = b(L)εt . (41)

152 / 212



Univariate Time Series Analysis
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Notation and Terminology

Further Aspects

Seasonal ARMA Processes

αs(Ls)(1− Ls)Dyt = βs(Ls)εt , (42)

ARMA Processes with deterministic Components:
Adding a constant

a(L)yt = c + b(L)εt . (43)

Or a linear Trend

a(L)yt = c0 + c1t + b(L)εt .
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(Univariate) Linear Models

Stationarity of ARMA Processes

The Concept of Stationarity

Stationarity is a property that guarantees that the essential
properties of a time series remain constant over time. An
important concept of stationarity is that of weak stationarity.
Time series {yt}∞t=−∞ is said to be weakly stationary if:
(1) the mean of yt is constant over time, i.e., E(yt ) = µ,
|µ| <∞;

(2) the variance of yt is constant over time, i.e., Var(yt ) =
γ0 <∞;

(3) the covariance of yt and yt−k does not vary over time, but
may depend on the lag k , i.e., Cov(yt , yt−k ) = γk , |γk | <∞.

⇒ A process is called strongly (strictly) stationary if the joint
distribution of (y1, ...yk ) is identical to that of (y1+t , ...yk+t ).
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(Univariate) Linear Models

Stationarity of ARMA Processes

Stationarity of AR(p) processes

An AR(p) is stationary if the absolute values of all the roots of
the characteristic equation

α0 − α1λ− · · · − αpλ
p = 0.

are greater than 1 (with α0 = 1).
This is in practice difficult to realize.
What about forth order characteristic equations?
Alternative: Employ the Schur Criterion
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Stationarity of ARMA Processes

Stationarity of AR(p) processes: The Schur Criterion

If the determinants

A1 =

∣∣∣∣α0 αp
αp α0

∣∣∣∣ ,A2 =

∣∣∣∣∣∣∣∣
α0 0 αp αp−1
α1 α0 0 αp
αp 0 α0 α1
αp−1 αp 0 α0

∣∣∣∣∣∣∣∣ . . .
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Stationarity of ARMA Processes

Stationarity of AR(p) processes: The Schur Criterion

and

Ap =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α0 0 . . . 0 αp αp−1 . . . α1
α1 α0 . . . 0 0 αp . . . α2
. . . . . . . . . . . . . . . . . . . . . . . .
αp−1 αp−2 . . . α0 0 0 . . . αp
αp 0 . . . 0 α0 α1 . . . αp−1
αp−1 αp−1 . . . 0 0 α0 . . . αp−2
. . . . . . . . . . . . . . . . . . . . .
α1 α2 . . . αp 0 0 . . . α0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

are all positive, then an AR(p) process is stationary.
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Stationarity of ARMA Processes

Stationarity of an AR(1) Process

Consider the AR(1) process

yt = α1yt−1 + εt

The characteristic equation is

1− α1λ = 0

We have

A1 =

∣∣∣∣α0 αp
αp α0

∣∣∣∣ =

∣∣∣∣ 1 −α1
−α1 1

∣∣∣∣
= 1− α2

1 > 0⇐⇒
∣∣α1
∣∣ < 1
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Stationarity of ARMA Processes

Stationarity of AR(p) processes: An Alternative
Schur Criterion

For the AR polynomial a(L) = 1− α1L− . . .− αpLp, the Schur
criterion requires the construction two lower-triangular Toeplitz
matrices, A1 and A2, whose first columns consist of the vectors
(1,−α1,−α2, . . . ,−αp−1)′ and (−αp,−αp−1, . . . ,−α1)′,
respectively, i.e.,

A1 =


1 0 · · · 0 0
−α1 1 0

−α2 −α1
. . .

...
... 0

−αp−1 −αp−2 · · · −α1 1,
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(Univariate) Linear Models

Stationarity of ARMA Processes

Stationarity of AR(p) processes: An Alternative
Schur Criterion

A2 =


−αp 0 · · · 0 0
−αp−1 −αp 0

−αp−2 −αp−1
...

...
. . . 0

−α1 −α2 · · · −αp−1 −αp

 .

Then, the AR (p) process is covariance stationary if and only if
the so-called Schur matrix, defined by

Sa = A1A′1 − A2A′2, (44)

is positive definite.
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(Univariate) Linear Models

Stationarity of ARMA Processes

Stationarity of AR(1) processes: An Alternative
Schur Criterion

For
yt = α1yt−1 + εt

we get A1 = [1] and A2 = [−α1]∣∣Sa
∣∣ = 1 · 1′ − (−α1) · (−α1)′ = 1− α2

1 > 0⇐⇒
∣∣α1
∣∣ < 1
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Stationarity of ARMA Processes

Stationarity of AR(2) processes: An Alternative
Schur Criterion

For
yt = α1yt−1 + α2yt−2 + εt

we get

A1 =

[
1 0
−α1 1

]
,A2 =

[
−α2 0
−α1 −α2

]

Sa =

[
1− α2

2 −α1 − α2α1
−α1 − α2α1 1− α2

2

]
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Stationarity of ARMA Processes

Stationarity of an AR(2) Process

For an AR(2) process covariance stationarity requires that the
AR coefficients satisfy

|α2| < 1,
α2 + α1 < 1, (45)
α2 − α1 < 1.
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Stationarity of ARMA Processes

Stationarity of MA(q) Processes

Pure MA processes are always stationary, because it has no
autoregressive roots.
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Univariate Time Series Analysis

(Univariate) Linear Models

Stationarity of ARMA Processes

Stationarity of ARMA(p,q) Processes

The stationarity property of the mixed ARMA process

a(L)yt = b(L)εt (46)

does not dependent on the values of the MA parameters.
Stationarity is a property that depends solely on the AR
parameters.
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(Univariate) Linear Models

Stationarity of ARMA Processes

Stationarity: Examples

α1 α2 Stationary?
AR(1) 0.5
AR(1) -0.99
AR(1) 1
AR(1) 1.5
AR(2) 0.5 0.4
AR(2) 0.2 -0.9
AR(2) 1.5 -0.5

⇒ Same conclusions for ARMA models with q MA lags with
arbitrary parameters (βi ).
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Stationarity of ARMA Processes

Examples

Are the following process stationary? Employ the
Schur-Criterion:

yt = 0.5yt−1 + εt (47)
yt = 0.5 + 0.5yt−1 + εt (48)
yt = 0.5− 0.5yt−1 + εt (49)
yt = 0.5 + 0.5yt−1 + 0.5yt−2 + εt (50)
yt = 0.5 + 0.5yt−1 + 0.5yt−2 − 0.8yt−3 + 0.5εt−1 + εt (51)
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(Univariate) Linear Models

Identification Tools

Autocovariance and Autocorrelation Functions

How to determine the order of an ARMA(p,q) process?
Useful tools are the

sample autocovariance function (SACovF)
and its scaled counterpart sample autocorrelation function
(SACF)
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(Univariate) Linear Models

Identification Tools

Deriving the ACovF and ACF for an AR(1) Process

Derive the Autocovariance Function for an AR(1) process.

yt = ayt−1 + εt , (52)

where εt is the usual white–noise process with E(ε2t ) = σ2.
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(Univariate) Linear Models

Identification Tools

Deriving the ACovF and ACF for an AR(1) Process
Consider the stationary AR(1) process

yt = ayt−1 + εt , (53)

where εt is the usual white–noise process with E(ε2t ) = σ2.
To obtain the variance γ0 = E(y2

t ), multiply both sides of (52) by
yt ,

y2
t = aytyt−1 + ytεt ,

and take expectations, i.e.,

E(y2
t ) = aE(ytyt−1) + E(ytεt )

or
γ0 = aγ1 + E(ytεt ).
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Identification Tools

Deriving the ACovF and ACF for an AR(1) Process

Thus, to specify γ0, we have to determine γ1 and E(ytεt ). To
obtain the latter quantity, substitute the RHS of (52) for yt ,

E(ytεt ) = E[(ayt−1 + εt )εt ]

= aE(yt−1εt ) + E(ε2t ).

Since yt−1 is independent of the future disturbances εt+i ,
i = 0,1, . . ., E(yt−1εt ) = 0 and E(ε2t ) = σ2,

E(εtyt ) = σ2.

Therefore,
γ0 = aγ1 + σ2. (54)
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Identification Tools

Deriving the ACovF and ACF for an AR(1) Process

To determine γ1 = E(ytyt−1), we basically repeat the above
procedure. Multiplying (52) by yt−1 and taking expectations on
both sides gives

E(ytyt−1) = aE(y2
t−1) + E(yt−1εt ).

Using E(yt−1εt ) = 0 and the fact that stationarity implies that
E(y2

t−1) = E(y2
t ) = γ0, we have

γ1 = aγ0. (55)
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Identification Tools

Deriving the ACovF and ACF for an AR(1) Process

Substituting (55) into (54) and solving for γ0 gives the
expression for the theoretical variance of an AR(1) process,
which we derived in the previous section,

γ0 =
σ2

1− a2 . (56)

It follows from (55) that

γ1 = a
σ2

1− a2 . (57)
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Identification Tools

Deriving the ACovF and ACF for an AR(1) Process

In fact, since

E(ytyt−k ) = aE(yt−1yt−k ) + E(εtyt−k ), k = 1,2, . . . ,

and E(εtyt−k ) = 0, for k = 1,2, . . ., first and higher-order
autocovariances are derived recursively by

γk = aγk−1, k = 1,2, . . . . (58)

It is obvious that the recursive relationship (58) holds also for
the autocorrelation function, ρk = γk/γ0, of the AR(1) process,
i.e., ρk = aρk−1, for k = 1,2, . . . .
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Identification Tools

Deriving the ACov and ACF for an ARMA(1,1) Process

Consider the stationary, zero-mean ARMA(1,1) process

yt = ayt−1 + εt + bεt−1, (59)

where εt is again an white–noise process with variance σ2.
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Identification Tools

Deriving the ACov and ACF for an ARMA(1,1) Process

As in the previous example, multiplying (59) by yt and taking
expectations yields

γ0 = aγ1 + E[yt (εt + bεt−1)]. (60)

To determine E[yt (εt + bεt−1)], replace yt by the right hand side
of (59), i.e.,

E[yt (εt + bεt−1)] = E[(ayt−1 + εt + bεt−1)(εt + bεt−1)]

= E(ayt−1εt + ε2t + bεt−1εt + abyt−1εt−1

+bεtεt−1 + b2ε2t−1)

= σ2 + abσ2 + b2σ2.
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Identification Tools

Deriving the ACov and ACF for an ARMA(1,1) Process

Taking the expectation operator inside the parentheses and
noting the fact that E(yt−1εt ) = E(εt−1εt ) = 0 and
E(yt−1εt−1) = σ2, we have

E[yt (εt + bεt−1)] = (1 + ab + b2)σ2. (61)

Multiplying (59) by yt−1 and taking expectations gives

γ1 = E[ay2
t−1 + yt−1(εt + bεt−1)]

= aγ0 + bσ2.
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Identification Tools

Deriving the ACov and ACF for an ARMA(1,1) Process

Combining (60)–(62) and solving for γ0 gives us the formula for
the variance of an ARMA(1,1) process

γ0 =
1 + 2ab + b2

1− a2 σ2. (62)

For the first order autocovariance we obtain from (59) and (60)

γ1 =

(
a(1 + 2ab + b2)

1− a2 + b2
)
σ2

=
(1 + ab)(a + b)

1− a2 σ2. (63)
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Identification Tools

Deriving the ACov and ACF for an ARMA(1,1) Process

Higher–order autocovariances can be computed recursively by

γk = aγk−1, k = 2,3, . . . . (64)
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Identification Tools

Excursion: The AcovF for a general ARMA(p,q)
process

Let yt be generated by the stationary ARMA (p,q) process

a(L)yt = b(L)εt , (65)

where εt is the usual white–noise process with E(εt ) = 0 and
E(ε2t ) = σ2; and a(L) and b(L) are polynomials defined by
a(L) = 1− α1L− . . .− αr Lr and b(L) = β0 + β1L + . . .+ βr Lr ,
with r = max(p,q) and αi = 0 for i = p + 1,p + 2, . . . , r , if r > p
or βi = 0 for i = q + 1,q + 2, . . . , r , if r > q.
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Identification Tools

Excursion: The AcovF for a general ARMA(p,q)
process

From the definition of the autocovariance, γk = E(ytyt−k ), it
follows that

γk = α1γk−1 + α2γk−2 + . . .+ αrγk−r (66)
+E(β0εtyt−k + β1εt−1yt−k + . . .+ βr εt−r yt−k ), k = 0,1, . . . , r .

Replacing yt−k by its moving average representation,
yt−k = b(L)/a(L)εt−k = c(L)εt−k , where
c(L) = c0 + c1L + c2L2 . . ., we obtain

E(εt−iyt−k ) =

{
ci−kσ

2, if i = k , k + 1, . . . , r ,
0, otherwise.
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Identification Tools

Excursion: The AcovF for a general ARMA(p,q)
process

Defining γ = (γ0, γ1, . . . , γr )′, c = (c0, c1, . . . , cr )′ and using the
fact that γk−i = γi−k , expression (66) can be rewritten in matrix
terms as

γ = Maγ + Nbcσ2. (67)

The (r + 1)× (r + 1) matrix Ma is the sum of two matrices,
Ma = Ta + Ha, with Ta denoting the lower-triangular Toeplitz
matrix

Ta =


0 0 · · · 0 0
α1 0 0

α2 α1
. . .

...
... 0
αr αr−1 · · · α1 0

 ,
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Identification Tools

Excursion: The AcovF for a general ARMA(p,q)
process

and Ha is “almost" a Hankel matrix and given by

Ha =



0 α1 α2 · · · αr−1 αr
0 α2 α3 · · · αr 0
...

...
...

0 αr−1 αr 0
0 αr 0 · · · 0 0
0 0 0 · · · 0 0
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Identification Tools

Excursion: The AcovF for a general ARMA(p,q)
process

Note that matrix Ha is not exactly Hankel due to the zeros in the
first column. Finally, the Hankel matrix Nb is defined by

Nb =


β0 β1 · · · βr−1 βr
β1 β2 · · · βr 0
...

...
βr−1 βr 0
βr 0 · · · 0 0

 .

184 / 212



Univariate Time Series Analysis

(Univariate) Linear Models

Identification Tools

Excursion: The AcovF for a general ARMA(p,q)
process

The initial autocovariances can be computed by

γ = (I −Ma)−1Nbcσ2. (68)

Since c = (I − Ta)−1b, a closed-form expression, relating the
autocovariances of an ARMA process to its parameters αi , βi ,
and σ2 is given by

γ = (I −Ma)−1Nb(I − Ta)−1bσ2. (69)
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Identification Tools

Excursion: The AcovF for a general ARMA(p,q)
process

Note that (I − Ta)−1 always exists, since | I − Ta |= 1, and that

Nb(I − Ta)−1 = [(I − Ta)−1]′Nb,

since Nb is Hankel with zeros below the main counterdiagonal
and (I − Ta)−1 is a lower-triangular Toeplitz matrix. Hence, (69)
can finally be rewritten as

γ = [(I − T ′a)(I −Ma)]−1Nbbσ2. (70)
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Identification Tools

Excursion: The AcovF for a general ARMA(p,q)
process

Note that for p < q = r only p + 1 equations have to be solved
simultaneously. The corresponding system of equations is
obtained by eliminating the last p − q rows in (67); and
higher–order autocovariances can be derived recursively by

γk =

{∑p
i=1 αiγk−i + σ2∑q

j=k βjcj−k , if k = p + 1,p + 2, . . . ,q,∑p
i=1 αiγk−i , if k = q + 1,q + 2, . . . .

(71)
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Identification Tools

Excursion: The AcovF for a general ARMA(p,q)
process

For pure autoregressive processes expression (70) reduces to

γ = [(I − T ′a)(I −Ma)]−1s, (72)

where the (r + 1)× 1 vector s is defined by
s = σ2(β0,0, . . . ,0)T . Thus, vector γ is given by the first column
of [(I − T ′a)(I −Ma)]−1 multiplied by σ2β0.

188 / 212



Univariate Time Series Analysis

(Univariate) Linear Models

Identification Tools

Excursion: The AcovF for a general ARMA(p,q)
process

In the case of a pure MA process, (70) simplifies to

γ = Nbbσ2, (73)

or

γk =

{
σ2∑q

i=k βiβi−k , if k = 0,1, . . . ,q,
0, if k > q.

(74)
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The AcovF of an ARMA(1,1) reconsidered

Consider again the ARMA(1,1) process
yt = α1yt−1 + εt + β1εt−1 from Example 3.4.2. To compute
γ = (γ0, γ1)′, we now apply formula (70). Matrices Ta, Ha, Nb
and vector b become:

Ta =

[
0 0
α1 0

]
, Ha =

[
0 α1
0 0

]
, Nb =

[
1 β1
β1 0

]
, b =

[
1
β1

]
.
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Identification Tools

The AcovF of an ARMA(1,1) reconsidered
Simple matrix manipulations produce the desired result:

γ = [(I − T ′a)(I −Ma)]−1Nbbσ2

=

[
1 + α2

1 −2α1
−α1 1

]−1 [ 1 β1
β1 0

] [
1
β1

]
σ2

=
1

1− α2
1

[
1 2α1
α1 1 + α2

1

] [
1 + β2

1
β1

]
σ2

=
σ2

1− a2

[
1 + β2

1 + 2α1β1
α1(1 + β2

1) + β1(1 + α2
1)

]
,

which coincides with results (62) and (63) in the previous
example.
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An Example

Derive γ0 and γ1 using the stated procedure for the following
process

yt = 0.5yt−1 + εt (75)

with εt ∼ N(0,1).

192 / 212



Univariate Time Series Analysis

(Univariate) Linear Models

Identification Tools

An Example

Find γi for i = 0, . . .3 for the following process:

yt = 0.5yt−1 + 0.5εt−1 + εt (76)

with εt ∼ N(0,1).
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The Yule-Walker Equations
Consider the AR(p) process

yt = α1yt−1 + . . .+ αpyt−p + εt

Multiplying both sides with yt−j and taking expectations yields

E(ytyt−j) = α1E(yt−1yt−j) + . . .+ αpE(yt−pyt−j)

which gives rise to the following equation system

γ1 = α1γ0 + α2γ1 + . . .+ αpγp−1

γ2 = α1γ1 + α2γ0 + . . .+ αpγp−2

. . .

γp = α1γp−1 + α2γp−2 + . . .+ αpγ0
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The Yule-Walker Equations

Or in matrix notation
γ = aΓ

with

Γ =


γ0 γ1 . . . γp−1
γ1 γ0 . . . γp−2
...

. . .
...

γp−1 γp−2 . . . γ0


We obtain a similar structure for the autocorrelation function by
dividing by γ0.
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Partial Autocorrelation Function

The partial autocorrelation function (PACF) represents an
additional tool for portraying the properties of an ARMA
process. The definition of a partial correlation coefficient eludes
to the difference between the PACF and the ACF. The ACF
ρk , k = 0,±1,±2, . . ., represents the unconditional correlation
between yt and yt−k . By unconditional correlation we mean the
correlation between yt and yt−k without taking the influence of
the intervening variables yt−1, yt−2, . . . , yt−k+1 into account.
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Partial Autocorrelation Function

The PACF, denoted by αkk , k = 1,2, . . ., reflects the net
association between yt and yt−k over and above the
association of yt and yt−k which is due to their common
relationship with the intervening variables yt−1, yt−2, . . . , yt−k+1.
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The PACF for an AR(1)

Consider the stationary AR(1) process

yt = α1yt−1 + εt

Given that yt and yt−2 are both correlated with yt−1, we would
like to know whether or not there is an additional association
between yt and yt−2 which goes beyond their common
association with yt−1.
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The PACF for an AR(1)

Let ρ12=Corr(yt , yt−1), ρ13=Corr(yt , yt−2) and
ρ23=Corr(yt−1, yt−2). The partial correlation between yt and
yt−2 conditional on yt−1, denoted by ρ13,2, is

ρ13,2 =
ρ13 − ρ12ρ23√

(1− ρ2
13)(1− ρ2

23)
.
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The PACF for an AR(1)

Considering an AR(1) process, we know that ρ12 = ρ23 = α1
and ρ13 = ρ2 = α2

1. Hence, the partial autocorrelation between
yt and yt−2, ρ13,2, is zero. Denoting the partial autocorrelation
between yt and yt−k by αkk , it can be easily verified that for any
AR(1) process αkk = 0, for k = 2,3, . . . . Since there are no
intervening variables between yt and yt−1, the first-order partial
autocorrelation coefficient is equivalent to the first order
autocorrelation coefficient, i.e., α11 = ρ1. In particular for an
AR(1) process we have α11 = α1.

200 / 212



Univariate Time Series Analysis

(Univariate) Linear Models

Identification Tools

The PACF for a general AR process

Another way of interpreting the PACF is to view it as the
sequence of the k -th autoregressive coefficients in a k -th order
autoregression. Letting αk` denote the `-th autoregressive
coefficient of an AR(k ) process, the Yule–Walker equations

ρ` = αk1ρ`−1 + · · ·+αk(k−1)ρ`−k+1 +αkkρ`−k , ` = 1,2, . . . , k ,
(77)
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The PACF for a general AR process

ρ` = αk1ρ`−1 + · · ·+αk(k−1)ρ`−k+1 +αkkρ`−k , ` = 1,2, . . . , k ,
(78)

give rise to the system of linear equations

1 ρ1 · · · ρk−1
ρ1 1 ρk−2
ρ2 ρ1 ρk−3
...

...
ρk−2 ρ1
ρk−1 ρk−2 · · · 1





αk1
αk2
αk3

...
αk(k−1)
αkk


=



ρ1
ρ2
ρ3
...

ρk−1
ρk


or, in short,

Pkαk = ρk , k = 1,2, . . . . (79)
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The PACF for a general AR process
Using Cramér’s rule, to successively solve (79) for αkk ,
k = 1,2 . . ., we have

αkk =
| P∗k |
| Pk |

, k = 1,2, . . . , (80)

where matrix P∗k is obtained by replacing the last column of
matrix Pk by vector ρk = (ρ1, ρ2, . . . , ρk )′, i.e.,

P∗k =



1 ρ1 · · · ρk−2 ρ1
ρ1 1 ρk−3 ρ2
ρ2 ρ1 ρk−4 ρ3
...

...
...

ρk−2 1 ρk−1
ρk−1 ρk−2 · · · ρ1 ρk
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The PACF for a general AR process

Applying (80), the first three terms of the PACF are given by

α11 =
|ρ1|
|1|

= ρ1,

α22 =

∣∣∣∣ 1 ρ1
ρ1 ρ2

∣∣∣∣∣∣∣∣ 1 ρ1
ρ1 1

∣∣∣∣ =
ρ2 − ρ2

1

1− ρ2
1
,
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The PACF for a general AR process

α33 =

∣∣∣∣∣∣
1 ρ1 ρ1
ρ1 1 ρ2
ρ2 ρ1 ρ3

∣∣∣∣∣∣∣∣∣∣∣∣
1 ρ1 ρ2
ρ1 1 ρ1
ρ2 ρ1 1

∣∣∣∣∣∣
=
ρ3 + ρ1ρ2(ρ2 − 2)− ρ2

1(ρ3 − ρ1)

(1− ρ2)− (1− ρ2 − 2ρ2
1)

.
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The PACF for a general AR process

From the Yule–Walker equations it is evident that | P∗k |= 0 for
an AR process whose order is less than k , since the last
column of matrix P∗k can always be obtained from a linear
combination of the first k − 1 (or less) columns of P∗k . Hence,
the theoretical PACF of an AR(p) will generally be different from
zero for the first p terms and exactly zero for terms of higher
order. This property allows us to identify the order of a pure AR
process from its PACF.
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The PACF for a MA(1) process

Consider the MA(1) process yt = εt + β1εt−1. Its ACF is given
by

ρk =

{
β1

1+β1
, if k=1,

0, if k=2,3,. . . .

Applying (80), the first 4 terms of the PACF are:

α11 = ρ1, α22 = −
ρ2

1

1− ρ2
1
, (81)

α33 =
ρ3

1

1− 2ρ2
1
, α44 = −

ρ4
1

1− 3ρ2
1 + ρ4

1
.
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The PACF for a MA(1) process

In fact, the general expression for the PACF of an MA(1)
process in terms of the MA coefficient β1 is

αkk = −
(−β1)k (1− β2

1)

1− β2(k+1)
1

.

⇒ PACF gradually dies out, in contrast to an AR process
⇒ this allows us to identify processes by looking at its
corresponding ACF and PACF
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Characteristics of specific processes

Identification Functions:
1 autocorrelation function (ACF), ρk ,
2 partial autocorrelation function (PACF), αkk ,
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Characteristics of AR processes

ACF: The Yule–Walker equations

ρk = α1ρk−1 + α2ρk−2 + . . .+ αpρk−p, k = 1,2, . . .

imply that the ACF of a stationary AR process is generally
different from zero but gradually dies out as k approaches
infinity.
PACF: The first p terms are generally different from zero;
higher-order terms are identically zero.
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Characteristics of MA Processes
ACF: We know that the ACF of an MA(q) process is given
by

γk =

{
σ2∑q

i=k βiβi−k , if k = 0,1, . . . ,q
0, if k > q,

which implies that the ACF is generally different from zero
up to lag q and equal to zero thereafter.
PACF: The PACF is computed successively by

αkk =
| P∗k |
| Pk |

, k = 1,2, . . . ,

with matrices P∗k and Pk defined in the Section before.
Example 3.6.2 demonstrated the pattern of the PACF of an
MA(1) process.
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ACF and PACF

Model
AR(p) MA(q) ARMA(p,q)

ACF tails off cuts off after q tails off
PACF cuts off after p tails off tails off

Table: Patterns for Identifying ARMA Processes
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