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Interest rates and returns

General problem

Quantity of interest

Z = g(X), X = (X1, . . . ,Xd)

Xi are random variables
Xi represent uncertain risk factors
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Interest rates and returns

Examples

portfolio return
individual stocks (X1, . . . ,Xd)

g is aggregation function

option payoff
single underlying X1
g is payoff function
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Interest rates and returns

Difference to regression setting

Xi part of the model:
in regression analysis, all Xi are taken as given
here we need to specify a distribution for (X1, . . . ,Xd)

Justification
in regression analysis, explanatory variables with influence on first
moment are observable upfront

for financial variables, explanatory variables (X1, . . . ,Xd) sometimes
only become observable simultaneously to Z

many financial variables tend to exhibit almost constant mean over
time: how they are distributed around their mean is important

Introduction to the modeling of assets Risk management Christian Groll 5 / 109



Interest rates and returns

Certain future payments

in the simplest case, all risk factors (X1, . . . ,Xd) are perfectly known

Example
bank account with given interest rate
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Interest rates and returns

Aggregation

even without uncertainty, our quantity of interest commonly implies a
multi-dimensional setting

Example
multi-period wealth calculation with given annual interest rates
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Interest rates and returns Interest and compounding

Interest and compounding
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Interest rates and returns Interest and compounding

given an interest rate of r per period and initial wealth Wt , the wealth
one period ahead is calculated as

Wt+1 = Wt (1 + r)

Example
r = 0.05 (annual rate), W0 = 500.000, after one year

500.000
(
1 +

5
100

)
= 500.000 (1 + 0.05) = 525.000
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Interest rates and returns Interest and compounding

multi-period compound interest:

WT (r ,W0) = W0(1 + r)T

Non-constant interest rates
for the case of changing annual interest rates, end-of-period wealth is
given by

W1:t = (1 + r0) · (1 + r1) · ... · (1 + rt−1)

=
t−1∏
i=0

(1 + ri)
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Interest rates and returns Interest and compounding

Logarithmic interest rates

logarithmic interest rates or continuously compounded interest rates
are given by

r logt := ln (1 + rt)
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Interest rates and returns Interest and compounding

Aggregation

with logarithmic interest rates aggregation becomes a sum rather than
a product of sub-period interest rates:

r log1:t = ln (1 + r1:t)

= ln
( t∏
i=1

(1 + ri)
)

= ln (1 + r1) + ln (1 + r2) + . . .+ ln (1 + rt)
= r log1 + r log2 + . . .+ r logt

=
t∑

i=1
r logi
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Interest rates and returns Interest and compounding

Compounding at higher frequency

compounding can occur more frequently than at annual intervals
m times per year: Wm,t (r) denotes wealth in t for W0 = 1

Biannually
after six months:

W2, 1
2
(r) =

(
1 +

r
2

)
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Interest rates and returns Interest and compounding

Effective annual rate

the effective annual rate Reff is defined as the wealth after one year,
given an initial wealth W0 = 1

with biannual compounding, we get

Reff := W2,1(r) =

(
1 +

r
2

)(
1 +

r
2

)
=

(
1 +

r
2

)2

it exceeds the simple annual rate:

(
1 +

r
2

)2
> (1 + r)⇒W2,1 (r) >W1,1 (r)
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Interest rates and returns Interest and compounding

m interest payments within a year

effective annual rate after one year:

Reff = Wm,1(r) =

(
1 +

r
m

)m

for wealth after T years we get:

Wm,T (r) =

(
1 +

r
m

)mT
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Interest rates and returns Interest and compounding

wealth is an increasing function of the interest payment frequency:

Wm1,t (r) >Wm2,t (r) , ∀t andm1 > m2
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Interest rates and returns Interest and compounding

Continuous compounding

the continuously compounded rate is given by the limit

W∞,1 (r) = lim
m→∞

(
1 +

r
m

)m
= er

compounding over T periods leads to

W∞,T (r) = lim
m→∞

(
1 +

r
m

)mT
=

(
lim

m→∞

(
1 +

r
m

)m)T
= erT
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Interest rates and returns Interest and compounding

under continuous compounding the value of an initial investment of
W0 grows exponentially fast

comparatively simple for calculation of interest accrued in between
dates of interest payments
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Interest rates and returns Interest and compounding

T m = 1 m = 2 m = 3 ∞

1 1030 1030.2 1030.3 1030.5
2 1060.9 1061.4 1061.6 1061.8
3 1092.7 1093.4 1093.8 1094.2
5 1159.3 1160.5 1161.2 1161.8
· · · · · · · · ·
9 1304.8 1307.3 1308.6 1310
10 1343.9 1346.9 1348.3 1349.9

Development of initial investment W0 = 1000 over 10 years, subject to
different interest rate frequencies, with annual interest rate r = 0.03

Introduction to the modeling of assets Risk management Christian Groll 19 / 109



Interest rates and returns Interest and compounding

Effective logarithmic rates

For logarithmic interest rates, a higher compounding frequency leads to

r log ;eff = ln(Reff )

= ln(Wm,1)

= ln
((

1 +
r
m

)m)
m→∞→ ln(exp (r))

= r
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Interest rates and returns Interest and compounding

Interpretation: If the bank were compounding interest rates continuously,
the nominal interest rate r would equal the logarithmic effective rate.

Also:

if r log ;eff = r for continuous compounding,

and continuous compounding leads to almost identical end of period
wealth as simple compounding (see table above)

the logarithmic transformation r log = ln(1 + r) does change the value
only marginally: r log ≈ r
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Interest rates and returns Interest and compounding

Conclusion

In other words:

we can interpret log-interest rates as roughly equal to simple rates

still, log-interest rates are better to work with, as they increase linearly
through aggregation over time
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Interest rates and returns Interest and compounding

Conclusion

But: if interest rates get bigger, the approximation of simple compounding
by continuous compounding gets worse!

ln(1 + x) = x for x = 0
ln(1 + x) ≈ x for x 6= 0
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Interest rates and returns Prices and returns

Prices and returns
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Interest rates and returns Prices and returns

Returns on speculative assets

while interest rates of fixed-income assets are usually known prior to
the investment, returns of speculative assets have to be calculated
after observation of prices

returns on speculative assets usually vary from period to period
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Interest rates and returns Prices and returns

let Pt denote the price of a speculative asset at time t

net return during period t:

rt :=
Pt − Pt−1

Pt−1
=

Pt
Pt−1

− 1

gross return during period t:

Rt := (1 + rt) =
Pt
Pt−1

returns calculated this way are called discrete returns
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Interest rates and returns Prices and returns

Continuously compounded returns

defining the log return, or continuously compounded return, by

r logt := lnRt = ln (1 + rt) = ln Pt
Pt−1

= lnPt − lnPt−1
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Interest rates and returns Prices and returns

Exercise

Investor A and investor B both made one investment each. While investor
A was able to increase his investment sum of 100 to 140 within 3 years,
investor B increased his initial wealth of 230 to 340 within 5 years. Which
investor did perform better?
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Interest rates and returns Prices and returns

Exercise: solution

calculate mean annual interest rate for both investors

investor A :

PT = P0 (1 + r)T ⇔
140 = 100 (1 + r)3 ⇔

3

√
140
100 = (1 + r) ⇔

rA = 0.1187
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Interest rates and returns Prices and returns

investor B :

rB =

 5

√
340
230 − 1

 = 0.0813

hence, investor A has achieved a higher return on his investment
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Interest rates and returns Prices and returns

Using continuous returns

for comparison, using continuous returns

Continuous case
continuously compounded returns associated with an evolution of
prices over a longer time period is given by

PT = P0erT ⇔
PT
P0

= erT ⇔ ln
(PT
P0

)
= ln

(
erT
)

= rT

r =
(lnPT − lnP0)

T
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Interest rates and returns Prices and returns

Continuous case

plugging in leads to

rA =
(ln 130− ln 100)

3 = 0.0875

rB =
(ln 340− ln 230)

5 = 0.0782
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Interest rates and returns Prices and returns

conclusion: while the case of discrete returns involves calculation of the
n-th root, the continuous case is computationally less demanding

while continuous returns differ from their discrete counterparts, the
ordering of both investors is unchanged

keep in mind: so far we only treat returns retrospectively, that is, with
given and known realization of prices, where any uncertainty involved
in asset price evolutions already has been resolved
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Interest rates and returns Prices and returns

Comparing different investments

comparison of returns of alternative investment opportunities over
different investment horizons requires computation of an average gross
return R̄ for each investment, fulfilling:

Pt R̄n !
= PtRt · . . . · Rt+n−1 = Pt+n

in net returns:

Pt (1 + r̄)n
!

= Pt (1 + rt) · . . . · (1 + rt+n−1)
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Interest rates and returns Prices and returns

solving for r̄ leads to

r̄ =

(n−1∏
i=0

(1 + rt+i)

)1/n

− 1

the annualized gross return is not an arithmetic mean, but a geometric
mean
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Interest rates and returns Prices and returns

Example

Figure 1

Left: randomly generated returns between 0 and 8 percent, plotted against
annualized net return rate. Right: comparison of associated compound
interest rates.
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Interest rates and returns Prices and returns

The annualized return of 1.0392 is unequal to the simple arithmetic mean
over the randomly generated interest rates of 1.0395!
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Interest rates and returns Prices and returns

Example

two ways to calculate annualized net returns for previously generated
random returns:

Direct way
using gross returns, taking 50-th root:

r̄annt,t+n−1 =

(n−1∏
i=0

(1 + rt+i)

)1/n

− 1

= (1.0626 · 1.0555 · ... · 1.0734)1/50 − 1

= (6.8269)1/50 − 1
= 0.0391
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Interest rates and returns Prices and returns

Via log returns
transfer the problem to the logarithmic world:

convert gross returns to log returns:

[1.0626, 1.0555, . . . , 1.0734]
log−→ [0.0607, 0.0540, . . . , 0.0708]

use arithmetic mean to calculate annualized return in the logarithmic
world:

r logt,t+n−1 =
n−1∑
i=0

r logt+i = (0.0607 + 0.0540 + ...+ 0.0708) = 1.9226

r̄ logt,t+n−1 =
1
nr

log
t,t+n−1 =

1
501.9226 = 0.0385
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Interest rates and returns Prices and returns

Example

Figure 2
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Interest rates and returns Prices and returns

convert result back to normal world:

r̄annt,t+n−1 = e r̄
log
t,t+n−1 − 1 = e0.0385 − 1 = 0.0391
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Interest rates and returns Prices and returns

Summary

multi-period gross returns result from multiplication of one-period
returns: hence, exponentially increasing
multi-period logarithmic returns result from summation of one-period
returns: hence, linearly increasing
different calculation of returns from given portfolio values:

rt =
Pt − Pt−1

Pt
r logt = ln

( Pt
Pt−1

)
= lnPt − lnPt−1
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Interest rates and returns Prices and returns

However, because of

ln (1 + x) ≈ x

discrete net returns and log returns are approximately equal:

r logt = ln (Rt) = ln (1 + rt) ≈ rt
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Interest rates and returns Prices and returns

given that prices / returns are already known, with no uncertainty left,
continuous returns are computationally more efficient

discrete returns can be calculated via a detour to continuous returns

as the transformation of discrete to continuous returns does not
change the ordering of investments, and as logarithmic returns are still
interpretable since they are the limiting case of discrete compounding,
why shouldn’t we just stick with continuous returns overall?

however: the main advantage only crops up in a setting of uncertain
future returns, and their modelling as random variables!
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Interest rates and returns Prices and returns

Importance of returns

Why are asset returns so pervasive if asset prices are the real quantity of
interest in many cases?
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Interest rates and returns Prices and returns

Non-stationarity

Most prices are not stationary:

over long horizons stocks tend to exhibit a positive trend

distribution changes over time

Consequence
historic prices are not representative for future prices: mean past prices
are a bad forecast for future prices
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Interest rates and returns Prices and returns

Returns

returns are stationary in most cases

⇒ historic data can be used to estimate their current distribution
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Interest rates and returns Prices and returns

General problem

Quantity of interest

Z = g(X), X = (X1, . . . ,Xd)

as statistical requirements tend to force us to use returns instead of
prices, almost always at least some Xi represent returns
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Interest rates and returns Prices and returns

Time horizon and aggregation

lower frequency returns can be expressed as aggregation of higher
frequency returns

lack of data for lower frequency returns (as they need to be
non-overlapping)

⇒ long horizons usually require aggregation of higher frequency returns:
Xt ,Xt+1, . . .
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Interest rates and returns Prices and returns

Outlook: mathematical tractability

Only with log-returns we preserve a chance to end up with a linear function:

Quantity of interest

Z = g(X)

= g(Yt ,Yt+1, . . . ,Xi)

= ĝ(Yt + Yt+1 + . . . ,Xi)
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Interest rates and returns Prices and returns

Outlook: statistical fitting

The central limit theorem could justify modelling logarithmic returns as
normally distributed:

returns can be decomposed into summation over returns of higher
frequency: e.g. annual returns are the sum of 12 monthly returns, 52
weakly returns, 365 daily returns,. . .
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Interest rates and returns Prices and returns

The central limit theorem states:

Independent of the distribution of high frequency returns, any sum of them
follows a normal distribution, provided that the sum involves sufficiently
many summands, and the following requirements are fulfilled:

the high frequency returns are independent of each other

the distribution of the low frequency returns allows finite second
moments (variance)
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Interest rates and returns Prices and returns

this reasoning does not apply to net / gross returns, since they can not
be decomposed into a sum of lower frequency returns

keep in mind: these are only hypothetical considerations, since we have
not seen any real world data so far!
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Probability theory

Probability theory
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Probability theory

randomness: the result is not known in advance
probability theory: captures randomness in mathematical framework
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Probability theory Probability spaces and random variables

Probability spaces and random variables
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Probability theory Probability spaces and random variables

sample space Ω: set of all possible outcomes or elementary events ω

Examples: discrete sample space:
roulette: Ω1 = {red,black}
performance: Ω2 = {good,moderate,bad}
die: Ω3 = {1, 2, 3, 4, 5, 6}

Examples: continuous sample space:
temperature: Ω4 = [−40, 50]

log-returns: Ω5 =]−∞,∞[
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Probability theory Probability spaces and random variables

Events

a subset A ⊂ Ω consisting of more than one elementary event ω is
called event

Examples
“at least moderate performance”:

A = {good,moderate} ⊂ Ω2

“even number”:

A = {2, 4, 6} ⊂ Ω3

“warmer than 10 degrees”:

A =]10,∞[⊂ Ω4
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Probability theory Probability spaces and random variables

Event space

the set of all events of Ω is called event space F
usually it contains all possible subsets of Ω: it is the power set of P (Ω)
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Probability theory Probability spaces and random variables

Events

{} denotes the empty set

Event space example

P (Ω2) = {Ω, {}} ∪ {good} ∪ {moderate}
= ∪{bad} ∪ {good,moderate} ∪ {good,bad} ∪ {moderate,bad}
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Probability theory Probability spaces and random variables

Events

an event A is said to occur if any ω ∈ A occurs

Example
If the performance happens to be ω = {good} , then also the event A = “at
least moderate performance” has occured, since ω ⊂ A.
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Probability theory Probability spaces and random variables

Probability measure
A real-valued set function P : F → R, with properties

P (A) > 0 for all A ⊆ Ω

P (Ω) = 1

For each finite or countably infinite collection of disjoint events (Ai) it
holds:

P (∪i∈IAi) =
∑
i∈I

P (Ai)

⇒ quantifies for each event a probability of occurance

Definition
The 3-tuple {Ω,F ,P} is called probability space.
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Probability theory Probability spaces and random variables

Random variable

instead of outcome ω itself, usually a mapping or function of ω is in
the focus: when playing roulette, instead of outcome “red” it is more
useful to consider associated gain or loss of a bet on “color”

conversion of categoral outcomes to real numbers allows for further
measurements / information extraction: expectation, dispersion,. . .

Definition
Let {Ω,F ,P} be a probability space. If X : Ω→ R is a real-valued function
with the elements of Ω as its domain, then X is called random variable.
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Probability theory Probability spaces and random variables

Example

Figure 3:random variable with discrete values
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Probability theory Probability spaces and random variables

Density function

a discrete random variable consists of a countable number of elements,
while a continuous random variable can take any real value in a given
interval

a probability density function determines the probability (possibly 0) for
each event

Discrete density function
For each xi ∈ X (Ω) = {xi |xi = X (ω) , ω ∈ Ω}, the function

f (xi) = P (X = xi)

assigns a value corresponding to the probability.
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Probability theory Probability spaces and random variables

Continuous density function
In contrast, the values of a continuous density function f (x) ,
x ∈ {x |x = X (ω) , ω ∈ Ω} are not probabilities itself. However, they shed
light on the relative probabilities of occurrence. Given f (y) = 2 · f (z) , the
occurrence of y is twice as probable as the occurrence of z .
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Probability theory Probability spaces and random variables

Example

Figure 4
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Probability theory Probability spaces and random variables

Cumulative distribution function The cumulative distribution function (cdf)
of random variable X , denoted by F (x) ,

indicates the probability that X takes on a value that is lower than or equal
to x , where x is any real number. That is

F (x) = P (X ≤ x) , −∞ < x <∞.
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Probability theory Probability spaces and random variables

a cdf has the following properties:

F (x) is a nondecreasing function of x ;

limx→∞ F (x) = 1;

limx→−∞ F (x) = 0.

furthermore:

P (a < X ≤ b) = F (b)− F (a) , for all b > a
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Probability theory Probability spaces and random variables

Interrelation pdf and cdf: discrete case

F (x) = P (X ≤ x) =
∑
xi≤x

P (X = xi)

Figure 5
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Probability theory Probability spaces and random variables

Interrelation pdf and cdf: continuous case

F (x) = P (X ≤ x) =

∫ x

−∞
f (u) du

Figure 6
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Probability theory Information reduction

Information reduction
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Probability theory Information reduction

Modeling information

both cdf as well as pdf, which is the derivative of the cdf, provide
complete information about the distribution of the random variable

may not always be necessary / possible to have complete distribution

incomplete information modelled via event space F
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Probability theory Information reduction

Example

sample space given by Ω = {1, 3, 5, 6, 7}

modeling complete information about possible realizations:

P (Ω) = {1} ∪ {3} ∪ {5} ∪ {6} ∪ {7}∪
∪ {1, 3} ∪ {1, 5} ∪ ... ∪ {6, 7} ∪ {1, 3, 5} ∪ ... ∪ {5, 6, 7}∪
∪ {1, 3, 5, 6} ∪ ... ∪ {3, 5, 6, 7} ∪ {Ω, {}}
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Probability theory Information reduction

example of event space representing incomplete information could be

F = {{1, 3} , {5} , {6, 7}}∪ {{1, 3, 5} , {1, 3, 6, 7} , {5, 6, 7}}∪ {Ω, {}}

given only incomplete information, originally distinct distributions can
become indistinguishable
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Probability theory Information reduction

Information reduction discrete

Figure 7
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Probability theory Information reduction

Information reduction discrete

Figure 8
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Probability theory Information reduction

Information reduction continuous

Figure 9
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Probability theory Information reduction

Measures of random variables

complete distribution may not always be necessary

compress information of complete distribution for better comparability
with other distributions

compressed information is easier to interpret

example: knowing “central location” together with an idea by how
much X may fluctuate around the center may be sufficient
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Probability theory Information reduction

Classification with respect to several measures can be sufficient:

probability of negative / positive return

return on average

worst case

measures of location and dispersion

Given only incomplete information conveyed by measures, distinct
distributions can become indistinguishable.
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Probability theory Information reduction

Expectation

The expectation, or mean, is defined as a weighted average of all possible
realizations of a random variable.
Discrete random variables
The expected value E [X ] is defined as

E [X ] = µX =
N∑
i=1

xiP (X = xi) .
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Probability theory Information reduction

Continuous random variables
For a continuous random variable with density function f (x) :

E [X ] = µX =

∫ ∞
−∞

xf (x) dx
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Probability theory Information reduction

Examples

E [X ] =
5∑

i=1
xiP (X = xi)

= 1 · 0.1 + 3 · 0.2 + 5 · 0.6 + 6 · 0.06 + 7 · 0.04 = 4.34

E [X ] = −2 · 0.1− 1 · 0.2 + 7 · 0.6 + 8 · 0.06 + 9 · 0.0067 = 4.34
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Probability theory Information reduction

Figure 10
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Probability theory Information reduction

Figure 11
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Probability theory Information reduction

Variance

The variance provides a measure of dispersion around the mean.

Discrete random variables
The variance is defined by

V [X ] = σ2
X =

N∑
i=1

(Xi − µX )2 P (X = xi) ,

where σX =
√
V [X ] denotes the standard deviation of X .
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Probability theory Information reduction

Continuous random variables
For continuous variables, the variance is defined by

V [X ] = σ2
X =

∫ ∞
−∞

(x − µX )2 f (x) dx
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Probability theory Information reduction

Example

V [X ] =
5∑

i=1
(xi − µ)2 P (X = xi)

= 3.342 · 0.1 + 1.342 · 0.2 + 0.662 · 0.6 + 1.662 · 0.06 + 2.662 · 0.04
= 2.1844 6= 14.913
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Probability theory Information reduction

Figure 12
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Probability theory Information reduction

Quantiles

Quantile
Let X be a random variable with cumulative distribution function F . For
each p ∈ (0, 1), the p-quantile is defined as

F−1 (p) = inf {x |F (x) ≥ p} .
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Probability theory Information reduction

Quantile

measure of location

divides distribution in two parts, with exactly p ∗ 100 percent of the
probability mass of the distribution to the left in the continuous case:
random draws from the given distribution F would fall p ∗ 100 percent
of the time below the p-quantile

for discrete distributions, the probability mass on the left has to be at
least p ∗ 100 percent:

F
(
F−1 (p)

)
= P

(
X ≤ F−1 (p)

)
≥ p
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Probability theory Information reduction

Example

Figure 13
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Probability theory Information reduction

Example: cdf

Figure 14
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Example

Figure 15
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Probability theory Information reduction

Example

Figure 16
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Probability theory Information reduction

Summary: information reduction
Incomplete information can occur in two ways:

a coarse filtration

only values of some measures of the underlying distribution are known
(mean, dispersion, quantiles)

Any reduction of information implicitly induces that some formerly
distinguishable distributions are undistinguishable on the basis of the limited
information.

tradeoff: reducing information for better comprehensibility /
comparability, or keeping as much information as possible
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Probability theory Information reduction

General problem

Quantity of interest

%(Z) = g(X), X = (X1, . . . ,Xd)

instead of the complete distribution of Z , interest only lies in some
measure % (expectation, variance, . . . )
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Probability theory Updating information

Updating information
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Probability theory Updating information

opposite direction: updating information on the basis of new arriving
information
concept of conditional probability
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Probability theory Updating information

Example

with knowledge of the underlying distribution, the information has to
be updated, given that the occurrence of some event of the filtration is
known

normal distribution with mean 2

incorporating the knowledge of a realization greater than the mean
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Probability theory Updating information

Unconditional density

Figure 17
Introduction to the modeling of assets Risk management Christian Groll 101 / 109



Probability theory Updating information

Figure 18
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Probability theory Updating information

Given the knowledge of a realization higher than 2, probabilities of values
below become zero:

Figure 19
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Probability theory Updating information

Without changing relative proportions, the density has to be rescaled in
order to enclose an area of 1:

Figure 20
Introduction to the modeling of assets Risk management Christian Groll 104 / 109



Probability theory Updating information

original density function compared to updated conditional density

Figure 21
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Decomposing density

Figure 22
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Probability theory Updating information

Figure 23
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Probability theory Updating information

Figure 24

Introduction to the modeling of assets Risk management Christian Groll 108 / 109



Probability theory Updating information

Figure 25
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